積分の計算と要約文

このQ&Aのポイント
  • 積分の計算について質問があります
  • 与式の積分を求める方法について教えてください
  • tanθ=xを使って与式を復元する方法を教えてください
回答を見る
  • ベストアンサー

積分の計算

∫1/√(x^2+1)dxをもとめよ。 x=tanθとおくと、dx=dθ/cos^2θ 与式=∫(dθ/cosθ)=∫cosθ/(1-sin^2θ)dθ sinθ=tとおくと、cosθdθ=dtより、 与式=∫dt/(1-t^2) =1/2((1/1-t)+(1/1+t))dt =1/2(-logI1-tI+logI1+tI)+C(絶対値) =1/2log{(1+t)/(1-t)}+C =1/2log{(1+sinθ)/(1-sinθ)}+C =1/2log{(1+sinθ)^2/cos^2θ}+C =log(1+sinθ/cosθ)+C とやって、tanθ=xを使って復元できなくなりました。 助けてください

  • tjag
  • お礼率43% (282/650)

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

1+x^2=?

関連するQ&A

  • 定積分

    ∫[0~1]√(x^2+1)dxの値を求めよ。 次の解答を考えましたが、別の解答のほうがよいというのがあったら 教えてください。 x=tanθとおく。dx=1/(cosθ)^2dθ よって、与式=∫[0~π/4]1/cosθdθ        =∫[0~π/4]cosθ/(cosθ)^2dθ =∫[0~π/4]cosθ/{1-(sinθ)^2}dθ sinθ=tとおく。sinθdθ=dt より       =∫[0~1/√2]1/{1-t^2}dθ       ・・・・・ このように考えましたが、よろしくお願いします。

  • 式変形で分からないところがあります(積分)

    [ 問題 ] ∫(0→1) dx/√(x^2+1) [ 解答 ] x=tanθ とおく。 (与式)=∫(0→π/4) cosθ/(1-sinθ) dθ …(※) t=sinθとおく。 (※)=∫(0→1/√2) dt/1-t^2 =∫(0→1/√2) dt/(1+t)(1-t) =1/2∫(0→1/√2) {1/(1+t)+1/(1-t)}dt←ここから =1/2[log|1+t|-log|1-t|](0→1/√2)←ここまで … (答)…log(√2+1) という式変形なのですが、 「ここから~ここまで」のところで なにがおこっているかが よくわかりません(;_;) なぜlogの間がマイナスになってるのに 1-tのままなのか… なんかそこがポイントらしくて 赤で書かれています… おねがいします…(;_;)!!

  • 積分計算

    以下の積分計算、間違っているのですが、どこで間違っているのかご指摘お願いいたします。 ∫{(sin x)^3・cos x }dx cos x = t とおくと、 -sin x ・ dx = dt よって、与式は ∫-(sin x)^2 ・ t ・ dt = ∫ (t^2 - 1)t・dt = 1/4 (t^4 - 2t^2) = 1/4 (cos x)^2 {(cos x)^2 -2}

  • 積分計算

    積分の計算をしたのですが 解答と違うのでどこが違うか指摘をお願いします 問題 ∫dx/√((x-1)^2-1)  (範囲は2から4)・・(1) 解答では (1)=log|x-1+√(x(x-2))| となるので log|x-1+√(x(x-2))|=log(3+2√2) そして自分の回答 x-1=1/costとおいて tの範囲が0からα(ただしcosα=1/3 sinα=2√2/3) dx=(tant/cost)dt (x-1)^2-1=(1/cos^2t)-1=tan^2t よって ∫(1/tant)(tant/cost)dt=∫(1/cost)dt=∫(cost/(1-sin^2t))dt ここで sint=uとして uの範囲が0から2√2/3 du=costdt ∫(1/1-u^2)du=1/2∫(1/1+u^2)+(1/1-u^2)du =1/2log(1+u)(1-u) =1/2log1/9 となってしまします よろしくお願いします

  • 不定積分

    毎度すみません。参考書の積分の問題を解いているのですが、答えが不確かなもので質問させて頂きます。 ・∫tan^2x dx t = tanx と置くと 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} dt/dx = 1/cos^2x , dx = cos^2x dt 与式 = ∫(tan^2x) { 2sinx/(cos^3x)} X cos^2x dt = ∫(tan^2x) 2tanx dt = 2∫t^3 dt = 2 X t^4/4 = tan^4x /2 ・∫1/(x^2 + 2x + 5) dx =∫1/(x^2 + 2x + 5) X (2x + 2) dx dt/dx = 2x + 2 dx = 1/(2x + 2) dt 与式 =∫1/(x^2 + 2x + 5) X (2x + 2) X 1/(2x + 2) dt =log|x^2 + 2x + 5| 一応自分で解いてみたのですが、誤った記述がありましたらご指摘頂けると有難いです。また、答えを導く際、他に簡単な方法等ありましたら、教えて頂けたら嬉しいです。

  • この不定積分の計算をおしえてください

    1/(2+sin X) の不定積分の計算がわかりません。 t=tan X/2 を使うらしいんですが、どうしても答えが違うのでおしえてください。 まず sin X = 2t/(1+t^2) cos X =(1-t^2)/(1+t^2) であっていますか? だとしたら dX/dt = 2/(1+t) ですよね? しかし dX/dt =2/(1+t^2) になるらしいんです。 どこが違うのかおしえてください。

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。

  • 積分の変形について

       ∫[0~π/4]x/(sin2x+2(cosx)^2) dx   =∫[0~π/4]x/(sin2x+cos2x+1) dx   = (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx    +(1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx   = (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx …………(1)    +(1/2)∫[π/4~0](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1) (-dt)    (t=π/4-xとおいた)   = (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx    +(1/2)∫[0~π/4](π/4-x)/(sin2x+cos2x+1) dx …………(2)   = (π/8)∫[0~π/4]1/(sin2x+cos2x+1) dx … (※)   = (π/8)[log(tanx+1)/2][0~π/4]   = πlog2/16 (1) から (2) の変形について教えてください。  t = π/4 - x とおけば   x = π/4-t   x = 0 → t = π/4, x = π/4 → t = 0.   dt = -dx なので (1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx = -(1/2)∫[π/4~0](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1) dt = (1/2)∫[0~π/4](π/4-t)/(sin(π/2-2t)+cos(π/2-2t)+1) dt まではわかるのですが、これを x に戻すのであれば   -(1/2)∫[0~π/4]x/(sin2x+cos2x+1) dx になるのではないですか。  なぜ   (1/2)∫[0~π/4](π/4-x)/(sin2x+cos2x+1) dx と変形できるのでしょうか。

  • 積分のやり方について

    下記の3問で解き方、考え方を教えてください。 (1) x=cos 2t, y=3sin t をx軸のまわりに回転してできる回転面の   面積 (0≦t≦π/2) (解答は49/4π) S=2π∫(0~π/2) y √((dx/dt)^2+(dy/dt)^2) dx で√内の処理がわかりません。 (2)曲線 x=tan t, y=sin t + 1 とx,y軸と直線x=1とで囲まれた図形の面積 (0≦t≦π/4)  解答は√2 S=∫(0~π/4) (sin t + 1)(tan t)' =∫(0~π/4) sin t + 1/(cos t)^2 ここから先で(cos t)^2を 変形したりしましたが答えがあわずに つまずいてます。 (3)∫(x^2- 2x + 3)/(x - 2)^3 dx 解答は log|x - 2| - (2/x - 2) - (3/2(x - 2)^2) 部分分数分解でやりましたがうまくできません。

  • 積分の問題(曲線の長さ)です。

    『曲線 y=x^2/2 (0≦x≦1) の長さを求めよ。』という問題です。 以下のように解いてみました。 曲線の長さをSとすると, S=∫√{1+(dy/dx)^2}dxなので, S=∫[0→1]√(1+x^2)dx x=tanθと置くと, S=∫[0→π/4](1/cos^3θ)dθ=∫[0→π/4]{1/(1-sin^2θ)cosθ}dθ さらにt=sinθと置くと, S=∫[0→1/√2]1/(1-t^2)^2dt=∫[0→1/√2]1/(1-t)^2・(1+t)^2dt =∫[0→1/√2]{1/2(1-t)^2+1/2(1+t)^2}dt=[1/2(1-t)-1/2(1+t)][0→1/√2] =√2 となったんですが添削をお願いします。