• ベストアンサー

相空間(相平面の場合)と普通の座標の違い

相空間(相平面の場合)と普通の座標の違いってなんでしょうか? 今微分方程式の解の定性的理論というのを学んでおり、従属変数が2つの例をやっています。 そこで相空間というのがいきなり出てきたのですが、普通の座標との違いがわかりません。 僕的には連立微分方程式を満たす解のグラフなら相空間というのかなと思ったんですが、結局よくわかりません。 どなたかわかるかた、教えてほしいです。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_38
  • ベストアンサー率43% (75/172)
回答No.1

n階微分方程式について、 解のk次導関数を第k+1成分に持つ n+1次元ベクトルの軌跡を考える ということを、よくやります。 その軌跡の舞台となるn+1次元空間のことを 方程式の相空間と言ったりするのですが… 連立微分方程式の話なんでしょうか?

関連するQ&A

  • 座標空間について

    平面座標にはxとyの軸があって、直線で表す比例や反比例のグラフ、式がありますが、空間座標の平面のグラフや、式はどういった風に表すのですか。又、空間座標はどんなものに使われるのですか?

  • 座標平面の作り方

    数学の教科書とか問題集に出てくる座標平面の作り方を教えてください!試験対策で問題を作っているのですが、この作り方がわからないので困っています。 単なる座標平面だけの作り方と、y=2x+1などの方程式のグラフの書き方も教えていただけると助かります。

  • 座標空間における図形 (激難)

    座標空間における図形 (激難) 座標軸に垂直な平面の方程式、P(a,b,c)とする。 点Pを通り、x軸に垂直な平面の方程式はx=a 点Pを通り、y軸に垂直な平面の方程式はx=b 教えてほしいところ 確かに、xyz空間上の点(x,y,z)の条件とみれば平面になりますが、何故それが1の場合、垂直、2の場合、平行といえるんですか??

  • 連立方程式の解が交点の座標と一致する理由は?

    連立方程式の解が交点の座標と一致する理由は? 学校で 連立方程式の解(x,y)=(a,b)はグラフの交点の座標と一致しますが、 どうして一致するのか説明せよと問題を出されてしまいました しかし教科書にも載ってないし、調べてもわかりませんでした。 どなたかできればわかりやすく教えてください

  • 3次元空間の座標変換

    ある立方体の空間(例として XYZが0~100の空間)にある点を座標変換して、 (100,100,100)から(0,0,0)を見たような平面に投影した座標と その座標の(0,0,0)からの高さを取得したいのですが、どのような式を用いればよいでしょうか?

  • 空間内の平面を表す不等式

    図の斜線部の三角系、つまり空間内の(a,0,0)(0,b,0)(0,0,c)三点を結ぶ三角系(平面)の方程式はどのよう表すのでしょうか?たぶん不等式になると思います。 上記の座標3点を通る方程式は当然わかりますが、図の斜線部をどのように不等式で表すかが分かりません。

  • 投影平面の角度から求める座標

    三次元上の点Pの求め方についてご助力ください。 ■XYZ座標上の点P(Px,Py,Pz)を、ZX,XY,YZの三平面からみたときの点Pの傾きからPz=10 とした時の点Pの座標を求めよ。 ◇傾き  α=-17.22 (ZX平面よりX軸を基準にした傾き←(反時計回りが正)  β=2.29 (XY平面よりX軸を基準にした傾き)  γ=-13.22 (YZ平面よりY軸を基準にした傾き) ◇各平面上に投影された点P[x,y,z] (1)Pzx[Acosα,0,Asinα] [A=原点から点Pzxまでの距離] (2)Pxy[Bcosβ,Bsinβ,0] [B=原点から点Pxyまでの距離] (3)Pyz[0,Ccosγ,Csinγ] [C=原点から点Pyzまでの距離] □上記の(1)、(2)、(3)より連立方程式を作成。  Acosα=Bcosβ  Bsinβ=Ccosγ  Asinα=Csinγ また、  A=Pz/SINα  B=Pz/COSβ  C=PY/COSγ より 連立方程式  Px=Pz*[COSα/SINα]_1  Py=Px*[SINβ/COSβ]_2  Px=Py*[SINγ/COSγ]_3 となります。 この連立方程式の作成まですすめたのですが、この連立方程式1,2,3,が釣り合わず、どこか解き方を間違ったのではないかと考えています。 お忙しいなか恐縮ですが、3平面に投影された角度から点Pを求める解を教えてください。

  • 図形の座標が求められません

    3次元空間で、座標の分かっている4つの点(A,B,C,D)と形の分かっている四角形EFGHがあります。 (EF,FG,GH,HE,EG,FHの長さが分かっている) AE,AH,DE,DH,BF,BG,CF,CGの長さが分かっている時、点E,F,G,Hの座標(それぞれのx,y,z座標)を求めたいんでけど、この場合、解はいくつあるんでしょうか。 また、少なくとも一つの解を求めたいんでけど、その方法はあるでしょうか。 2点間の距離を元に連立方程式を作って解こうと思いましたが、その連立方程式が解けませんでした。 ヒントだけでも、どなたか、よろしくお願いいたします。

  • 平面の方程式

    3つの座標(1,-1,3),(-2,5,9),(-1,2,-1)を通る平面を求めよという問題がうまく出来ません. 途中経過としては、 平面の方程式をAx+By+Cz+D=0として、3つの座標から2つを取り出しベクトルをつくり、そのベクトルと平面の法線の内積が0になるという方程式を3座標の3つの組み合わせ分作成し、連立させて解きました.これによって、法線は求まったのですが、平面と原点の距離Dが定まりません.  どなたか教えていただけませんでしょうか?

  • 3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離

    3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離。残差ではない。) -- 点と平面のZ軸方向の距離(残差)の二乗和を最小とする場合には、 平面をax+by+c=zとして、Σ(ax+by+c-z)^2をa,b,cのそれぞれで偏微分して それを=0とした連立方程式を解くことで解を得ることが出来ました。 また、式の形も、ある点のxとyを平面の式へ代入した際の値と、点のz値の差分を見ており、 簡単に納得のできるものとなりました。 これに対して、点と平面の距離(空間的な最小距離)の二乗和を最小とする場合には、 どのような流れで計算すれば良いのでしょうか? 点と平面の距離は|Ax+By+Cz+D| (A,B,Cは単位ベクトル)として求まりますが、 これをどう使うのかが分かりません。 Σ(Ax+By+Cz+D)^2をA,B,C,Dのそれぞれで偏微分して=0としても、 定数項が無いため、連立方程式の解がすべてゼロとなってしまいます。 強引に、Σ(A'x+B'y+C'z+1)^2として変形させて解いてみましたが、 得られたA',B',C'からA,B,C,Dに戻すと、Dがきちんと出ませんでした。(他についても怪しい。) こういった状況に迷い込んでしまい、どう考えるのが良いのか分からなくなってしまいました。 指南いただけませんでしょうか?