線形代数での表現行列の問題について

このQ&Aのポイント
  • 線形代数での表現行列の問題について困っています。R^2およびR^3の基底に関する関数fの表現行列や標準形について教えてください。
  • 質問文章では、線形代数での表現行列の問題について困っていることが述べられています。具体的には、関数fの表現行列や標準形に関する問題です。質問者は、基底に関連する計算や解法について教えて欲しいとしています。
  • 線形代数の問題に関連して、関数fの表現行列や標準形について教えてください。具体的には、R^2およびR^3の基底に関する計算や解法についての質問です。質問者は、(1)と(2)の添削や(3)の解答を求めています。
回答を見る
  • ベストアンサー

線形代数より表現行列の問題で困っています。

線形写像 f: R^2→R^3 を次で定める: f(( x(1), x(2) ))=( x(2), -x(1), -2x(1)+x(2) ) (※列ベクトルです) このとき、次の問に答えなさい. (1) R^2 の基底 < u(1)=(1, 3), u(2)=(2, 5) > と R^3 の基底   < v(1)=(1, 0, -1), v(2)=(0, 1, 2) , v(2)=(-1, 2, 2) > に関するfの表現行列を求めよ. (自分の答え) ( f(1, 3) f(2, 5) ) = (3 5, -1 -2, 1 1) = (1 0 -1, 0 1 2, -1 2 2 )A ここで、 (1 0 -1, 0 1 2, -1 2 2 )^(-1) = (1/3)*(2 2 -1, 2 -1 2, -1 2 -1 ) より A = (1/3)*(2 2 -1, 2 -1 2, -1 2 -1 )・(3 5, -1 -2, 1 1) = (1/3)*(3 5, 9 14, -6 -10) // (2) 上で求めた行列Aに対して基本変形を行うことで、その標準形を求めよ. (自分の答え) 基本変形から (1/3)*(3 5, 9 14, -6 -10)→(1 0, 0 1, 0 0) // (3) fの表現行列が標準形となるように、R^2 ,R^3 各々の基底を一組求めよ. (3)は全く分かりません (1) (2) の添削と (3)を教えていただきたいです。 よろしくおねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • reiman
  • ベストアンサー率62% (102/163)
回答No.1

問題に書いてある行ベクトルは全て列ベクトルと解釈する。 (1) 自然基底に対するfの表現行列Mは M= [ 0  1] [-1  0] [-2  1] である。 すなわちfにより2次自然基底の座標xが3次自然基底の座標yに対応するならば y=Mx・・・1 U= [ 1  2] [ 3  5] V= [ 1  0 ー1] [ 0  1  2] [ー1  2  2] とし fにより (1)記載のR^2基底による座標uのベクトルが (1)記載のR^3基底による座標vのベクトルに 対応するとしたとき 座標uが表すベクトルの自然基底による座標は x=Uu・・・2 座標vが表すベクトルの自然基底による座標は y=Vv・・・3 1,2,3より Vv=MUu すなわち v=V^-1MUu よって v=Au・・・4 だから A=V^-1MU・・・5 (2) 2次正則正方行列Q、3次正則正方行列Pによって J=PAQ・・・6 が標準形になったとする。 (3) 1,5,6より (PV^-1)y=J(Q^-1U^-1)x・・・7 fによりベクトル1がベクトル2に対応するとき fの表現行列をJとするR^2の基底によるベクトル1の座標をaとし fの表現行列をJとするR^3の規定によるベクトル2の座標をbとすると b=Ja・・・8 だから7,8により a=(Q^-1U^-1)x b=(PV^-1)y となればよく (Q^-1U^-1)^-1=UQの列ベクトル2個を並びの順にfの表現行列をJとするR^2の基底とし (PV^-1)^-1=VP^-1の列ベクトル3個を並びの順にfの表現行列をJとするR^3の基底とすればよい。

camember6
質問者

お礼

分かりやすい解答ありがとうございます。 とても助かりました。

関連するQ&A

  • 線形代数についての質問です。お願いします。

    (2)が解答の仕方がわかりません。(3)はどう解答にもっていけばいいのか分かりません。 できれば解答と解説をお願いします。 やってもらえるととても助かりいます。 (1) R^2の基底 <u_1=転置(1,3) u_2=転置(2,5)> R^3の基底 <v_1=転置(1,0,-1) v_2=転置(0,1,2) v_3=転置(-1,2,2)> に関する表現行列Aを求めよ。 (2) 上で求めた行列Aに対して基本変形を行うことで、その標準形を求めよ。 (基本変形を明記する必要はないが、そのようになる理由は述べよ) だだし、行列の標準形とは、一般に (E 0)の形の行列のことである。 0 0 ここで、Eは単位行列、0はゼロ行列を表す。 ランク標準形ともいう。 (3) fの表現行列が標準形となるように、R^2、R^3の各々の基底を一組求めよ。 以上の問いをお願いします。

  • 線形代数の問題です!

    以下の問題、わかる方解答お願いします。 1.Q上の線形空間Q(√3)の基底として、1、√3を取る。ωを1の原始3乗根のうち虚部が正であるもの ω=(-1+√-3)/2 とするとき、ω倍する写像の、この基底に関する行列表示を求めよ。 2.R^2上の直線l:y=√3xに関する折り返しが与える線形写像をfとする。 (1)R^2の標準基底に関するfの行列表示を求めよ。 (2)R^2の基底    x=(√3 -1)、 y=(1 √3)   に関するfの行列表示を求めよ。 よろしくお願いします。

  • 表現行列 線形変換

    線形変換f:R^3→R^3がR^3の基底が{a,b,c}に関して f(a)=a-c f(b)=a+b f(c)=b+c の時与えられた基底に関するfの表現行列Aを求める問題で 解説ではv∈R^3 の座標をt(x,y,z)とすると tは転置を意味する。 すなわちv=xa+yb+zc f(v)=f(xa+yb+zc) =x(a-c)+y(a+b)+z(b+c) =(x+y)a+(y+z)b+(-x+z)c ... と表現行列と座標の関係から求めてますが (f(a) f(b) f(c))=(a b c)A と表現行列の定義から簡単に暗算でも求まりますよね。 それで求めてはいけないのでしょうか? v=・・・を使うのは線形写像fの像Imfの基底を求める時ぐらいしか使わないイメージですが間違っているのでしょうか? 答えAはわかっているので大丈夫です。

  • 線形写像での基底に関する表現行列

    線形写像f:V→Wでの,ある基底に関する表現行列に関しての質問です。 まずVの基底をΓV,Wの基底をΓWとしたときの, 「基底ΓV,ΓWに関する表現行列T1を求めよ」と, 「基底ΓVに関する表現行列T2を求めよ」という違いがよくわかりません。 「基底ΓV,ΓWに関する~」は,「Vで基底ΓVのものを線形写像fした場合,Wで基底ΓWになるような表現行列T1を求めよ」のようにイメージしているんですけど,これだと,「基底ΓVに関する~」の方がイメージできません。このイメージがもう間違っているんでしょうか? また,理屈抜きでT=[T(e1) T(e2) ・・・]で,「基底ΓVに関する~」を求めてみようと思ったのですが,標準基底以外のときうまくいきません。この公式は標準基底のときのみに使えるものなのでしょうか?

  • 線型代数

    実線型空間R^4におけるv1,v2,v3,v4で張られる部分空間をWとします。また、  v1=t(1,1,-2,0),v2=t(1,-1,0,-2),v3=t(-2,1,1,3),v4=t(-1,2,-1,3) とします。ここで、Wの基底をv1,v2とすると、直交補空間W’の基底は、  u1=t(1,1,1,0),u2=1,-1,0,1) dimW’=2 となります。 以上の設定の下で、次の問題がよくわからないので質問させていただきます。 (1)2×4行列Aで、KerF=Wとなるものを1つ求める。 (2)4×2行列Bで、ImF=W’となるものを1つ求める。 という問題です。ここで、線型写像fについては、m×n行列Xに対して、 f;R^n→R^mとし、f(v)=Xv(vはR^nの元)という写像です。 求める行列を具体的に文字で置いて計算してみたのですが、うまくいきません。 (1)については、まず求める行列Aを A=|a1 a2 a3 a4| |b1 b2 b3 b4| と置いて、KerF=Wより、v1をとってAv1=0というように計算していこうと考えましたが、1行と2行の係数が同じになってしまいます。(2)についても同様の考え方で計算してみたのですが、この場合も同じような結果になってしまいます。どのように考えていったらいいのでしょうか?ご教授お願いします。 以上読みづらい文章となってしまいましたが、よろしくお願いします。

  • 表現行列の求め方

    行列 1 2 -1 4 0 1 2 3 2 3 -4 5 に対応する線形写像f:R4→R3について R4の標準基底{e1,e2,e3,e4},R3の基底{(1 1 2),(3 5 4),(1 1 1)}に関するfの表現行列 はどうやって求めたらいいのでしょうか。 試験が近いのですがこのあたりがよく分からなくて詰まっています。 よろしければ回答お願いします。

  • 表現行列

    Vを実数に係数を持つ2次以下の多項式全体が成すベクトル空間とする。すなわち、 V={a+bx+c*x^2|a、b、c∈R} である。tを0≦t なる定数とし、線形変換T :V→V を T(f(x))=f(1+tx)により定義する。 Vの基底1、x、x^2に関するTの表現行列を求めよ。 という問題があります。一般に、、、、 【線形写像f:R^n→R^mに対して、(m,n)型の行列Aがただひとつ定まり、 x'=f(x)=Axと表せる。(x∈R^n, x'∈R^m) この行列Aを、線形写像fの表現行列という。】 表現行列はこのように定義されていますから、この問題の場合 t^(T(1),T(x),T(x^2))= (1,0,0) (1,t,0) (1,2t,t^2) * t^(1,x,x^2) となるため、求める表現行列Aは (1,0,0) (1,t,0) (1,2t,t^2) となるかと思っていたのですが、解答には、これを転置した行列が書いてありました。 (1,1,1) (0,t,2t) (0,0,t^2) となっていました。 なぜこうなるのか理屈が分からないのですみませんが教えてください。

  • 線形代数の問題の解き方がわかりません

    以下の問題が解けなくて困っています。 V、Wをベクトル空間、v1、v2、…vn をVの基底とし、w1、w2、…wmをWの基底とする。ここで、dimV=n、dimW=mとした。線形写像T:V→Wに対し、上記基底に対する表現行列をAとする。 (1)線形写像Tが一対一(単射)かつ上へ(全射)の写像であるとき、その逆写像Tインバースは線形写像となることを示せ。(このとき、TはVからWへの同型写像といわれる。) (2)Tが同型写像であるときの必要十分条件は、n=m かつ Aは正則行列となることを示せ。またTが同型写像であるとき、Tの逆写像の表現行列はAの逆行列であることを示せ。 解き方がわかる方は教えてください。(1)だけなど、途中まででも構いません。

  • 松坂『線形代数入門』:表現行列の標準系

    本書のp205の命題6.10 V,Wをそれぞれn次元、m次元のベクトル空間とし、F:V→Wを線形写像とする。Fの階数がrならば、V、Wの基底α、βを適当に選んで、Fを次の形の行列で表現することができる [I_r O_r,n-r Om-r,r Om-r,n-r] I_rはr次の単位行列、Oはそれぞれ付記された添数の型の零行列を表す。 r次の単位行列を0で埋めてm*nにした行列です。 教科書の証明は KerFはn-r次元であるから、その基底を{v_r+1,...,v_n}とするとして、 それを拡張したVの基底を{v_1,...,v_r,v_r+1,...,v_n}とするそのとき F(v_1)=w_1, ..., F(v_r)=w_r とおけば、{w_1, ... , w_r}はImFの基底となる。 そこで{w_1, ... , w_r}を拡張したWの基底を{w_1, ... , w_r , w_r+1, ... ,w_n}とすれば F(v_r+1)=0 , ... ,F(v_n)=0 より表現行列は明らかに上で示した形になる。 なぜこれで示せているのかわからないです…

  • 線形代数>線形変換>表現行列

    【問題】  次のR^3→R^3の写像が線形変換かどうか調べよ。もし線形変換ならば、その表現行列も示せ。   x       x+y+z  ( y ) |→ ( 0 )   z       xyz  /* ----------------------------------------------------------------------- */ と言う問題です。 解答例として以下のように挙げられているのですが、解らない部分があります。 /* ----------------------------------------------------------------------- */ 【解答例】   x      x+y+z  f( y ) = (  0  )  とおく。   z       xyz      0      1        1      1+2+1     4 f(( 1 ) + ( 1 )) = f( 2 ) = (  0  ) = ( 0 )    1      0        1      1*2*1     2   0       1      0+1+1     1+1+0     4 f( 1 ) + f( 1 ) = (  0  ) + (  0  ) = ( 0 )   1       0      0*1*1     1*1*0     0 なので、    0      1        0       1 f(( 1 ) + ( 1 )) ≠ f( 1 ) + f( 1 )    1      0        1       0 よって写像の線形性を満たさないので線形変換ではない。・・・(答) /* ----------------------------------------------------------------------- */ 上記解答例の   0         1 ( 1 ) および ( 1 ) はどこからくるのですか?   1         0 あとの部分は解ります。宜しくお願いします。