• 締切済み

数式の証明

nが自然数のとき、n(n+1)(2n+1)は6の倍数であることを証明しなさい。 この問題分かる方、解説お願いします。

みんなの回答

回答No.7

こんな簡単な問題に、数学的帰納法なんか不要。 n(n+1)(2n+1)=2n^3+3n^2+n=2*(n^3-n)+3*(n^2+n)=2*(n-1)*(n)*(n+1)+3*(n)*(n+1)と変形できる。 (n-1)*(n)*(n+1)は3連続する自然数の積から、6の倍数。 又、(n)*(n+1)は連続する自然数の積から2の倍数であるから、3*(n)*(n+1)は6の倍数。 以上から、n(n+1)(2n+1)は6の倍数。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.6

1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6 を帰納法で示す.

回答No.5

嘗て千葉大に類題が出題されました。 自然数nは3k, 3k+1, 3k+2と3つの形で必ず表す事が出来る。 全部代入すると全てで3をくくり出せるので3の倍数は言えます。あとは、自然数sと自然数s+1があればどちらかが偶数である為3と2を因数に持つ自然数は6の倍数になると言えます。

  • gohtraw
  • ベストアンサー率54% (1630/2966)
回答No.4

nあるいはn+1のいずれかは偶数なのでn(n+1)(2n+1)も偶数になります。  nあるいはn+1が3の倍数の場合、n(n+1)(2n+1)は明らかに6の倍数です。  n、n+1のいずれも3の倍数ではない場合、これらは3m+1、3m+2と表わされ、このとき2n+1=2(3m+1)+1=6m+3なので2n+1が3の倍数になります。

  • proto
  • ベストアンサー率47% (366/775)
回答No.3

数学的帰納法で証明すると。 n=1のとき、   1*(1+1)*(2*1+1) = 6 よって成り立つ。 n=kのとき成り立つと仮定すると、即ちmを整数として   k(k+1)(2k+1) = 6m が成り立つと仮定すると、 n=k+1のとき   (k+1)(k+2)(2k+3) = (k+2)*{(k+1)(2k+3)} = k(k+1)(2k+3) + 2(k+1)(2k+3)            = ((2k+1)+2)*{k(k+1)} + 2(k+1)(2k+3) = k(k+1)(2k+1) + 2k(k+1) + 2(k+1)(2k+3)            = 6m + 2k(k+1) + 2(k+1)(2k+3)            = 6m +2(3k^2+6k+3) = 6m + 6(k^2+k+1)            = 6(m+k^2+k+1) m+k^2+k+1は整数より、n=k+1のときも成り立つ。 よって数学的帰納法より、n≧1なる全ての自然数について成り立つ。

回答No.2

タイプミス ×= 6(a + (k+1))^2 ○= 6(a + (k+1)^2)

回答No.1

題意を数学的帰納法を用いて示す。 i)n = 1のとき 1*2*3 = 6 よって題意は満たされる ii)n = kのとき題意が成り立つと仮定すると, 整数aを用いて (k^2 + k)(2k + 1) = 6a とかけ 2k^3 + 3k^2 + k = 6a と変形できる。 これを用いて n = k + 1のとき成り立つことを示す。 (k + 1)(k + 2)(2k + 3) = (k^2 + 3k + 2)(2k + 3) = 2k^3 + 9k^2 + 13k + 6 = (2k^3 + 3k^2 + k) + 6(k+1)^2 = 6(a + (k+1))^2 よって,n = k + 1の時も題意を満たす。 i)ii)より数学的帰納法に基づき,題意は満たされる。 ========== もっと楽な解き方もあるかもしれないけど,証明はこれが書きやすいかな,と思って。

関連するQ&A

  • 背理法による証明

    以下の問題を背理法で証明したいのですが・・・。なかなか進まなくて。 どなたかお分かりの方がいらっしゃいましたらお願いいたします。 nは自然数とする。このとき(n-1)^3+n^3+(n+1)^3は9の倍数であることを証明しなさい。 です。 連続する3つの数の積が3の倍数になることを利用するとは思うのですが・・・。よろしくお願いいたします。

  • 6の倍数になることの証明

    nが自然数の時、n(n+1)(nー1)が6の倍数になることを証明せよ。 連続した3つの整数の積が6の倍数になることの証明なのでn=2aと n=2a+1にわけて証明するのかと思うのですが、わかりません。どのように証明したらよいかどなたか教えて頂けませんか。

  • 証明問題の解答を、お願いします!

    問題は「nは自然数とする。このとき5^n(5のn乗)-1は4の倍数であることを数学的帰納法を用いて証明せよ。」です。 n=1のとき5^1-1=4までは証明できるのですが、この後の証明方法が思い浮かびません。どなたか教えて下さい!宜しくお願いします。

  • 数学A 整数の性質の証明について

    問題 nは自然数とする。n+3は6の倍数であり、n+1は8の倍数であるとき、     n+9は24の倍数であることを証明せよ。 この問題の解答は、 n+3,n+1は自然数a,bを用いて,n+3=6a ,n+1=8bと表わされる。 n+9=(n+3)+6=6a+6=6(a+1) ・・・(1) n+9=(n+1)+8=8b+8=8(b+1) ・・・(2) よって(1)よりn+9は6の倍数であり,(2)よりn+9は8の倍数でもある。 したがって,n+9は6と8の最小公倍数24の倍数である。 とこのようになっています。 ここで質問ですが、上の証明は自然数a,bを用いてnを表示していますが、 これを、整数a,bを用いてnを表示したら、不正解になってしまうのでしょうか。 理由も含め教えてください。よろしくお願いします。

  • 【背理法】

    (1) 1.√2が無理数であることの証明。 2.実数aがa^2+a+1=0をみたすとき、 aが無理数であることの証明。 (2) 1.nが自然数とするとき、n^3が3の倍数ならば、 nは3の倍数になることの証明。 2.3の3乗根が無理数であることの証明。 (1)の1は省略してもらってもかまいません^^* 実際に書いてあったまま載せました。 その他の問題が解けずに悩んでます(><) 解ける方がいらっしゃいましたら、 解説お願いします。

  • 証明

    x,y,zを自然数として、p=(x^2)+(y^2)+(z^2)とする。 x,y,zがいずれも3の倍数でないならば、pは3の倍数である問題で nを3の倍数でない自然数とするとkを整数とすると どうしてn=3k±1と表すことが分かりません。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。

  • 証明

    1+2分の1+3分の1....+n分の1≧(n+1)分の2n を証明せよ。(nは自然数のとき) 数学的帰納法を使う証明らしいのですが、答えをみてもよく計算の仕方がわかりません。 詳しい解説、解くに計算のところをお願いします。

  • 数Bの整数の性質の証明について質問です

    すべての自然数nについて、nの3乗+(n+1)の3乗+(n+2)の3乗は9の倍数である。このことを、数学的帰納法を使わずに証明せよ。 という問題に全くわかりません。回答よろしくお願いします。