• 締切済み

有理数の問題について

今日数学の講義で(0,1)内にある有理数全体は全有理数Qと1対1対応するか。と言う問題を出されました。 一通り考えてみたのですが、さっぱりわかりません。 もしよろしかったらヒントでもいいので教えてくださると助かります。 お返事まってす。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

いまさらですが, 「ぐっすり眠れた」のでしょうか? いや, なんとなく「それで納得できるのかなぁ」と思ったもので.... やっぱり全単写を自分で作ってみるべきだと思いますよ. いろいろとあやはありますが #1 でいわれるように自然数を介せば簡単. あと, 「(0, 1) の有理数」と「1 より大きい有理数」が 1対1 に対応することに気づけば別の方法もあります.

  • 33550336
  • ベストアンサー率40% (22/55)
回答No.1

まず結論から言うと、両方とも可算濃度をもつので全単射は必ず存在します。 で、具体的にどう作るか、ですが一度自然数全体を介せば、ある程度具体的かつ簡単に作れると思います。 つまり適当な規則に従って順番をつけるわけです。 一度やってみてください。

merosu1017
質問者

お礼

返事ありがとうございます。 全単射が必ず存在するという事は(0,1)内にある有理数全体と全有理数Qは一対一対応するということですね。 これで今日はぐっすり眠れそうです。 本当にありがとうございましたm(__)m

関連するQ&A

  • 有理数

    p/(√2-1)+q/√2=1 を満たす有理数p、qはどうやって求めればいいのですか?

  • 有理数÷無理数=??

    ただ今高一数学を勉強しているのですが(有理数÷無理数= ) をふと考えたのですが有理数が0の時答えは0で有理数。 有理数が0以外の場合無理数になるであっているでしょうか??

  • 無理数と有理数の証明

    √2が無理数であることは既知とし、√2+√3が無理数であることを次のように証明した。 まず、p=√2+√3、q=√2ー√3とする。 (1)pq=-1は有理数であるから、もしpが有理数ならqも有理数である。 (2)同様にqが有理数ならpもまた有理数である。 (3)またp+q=2√2は有理数ではないからpが有理数ならqは有理数ではない。 (4)よってqを有理数と仮定しても有理数でないと仮定してもpは有理数である。 (5)それゆえpうぃ有理数と仮定すると矛盾が生じる。 異常によりpは無理数である。 上の証明で不要と思われる文章を教えて下さい。 頭が混乱してさっぱり分かりません。 ご教示いただけますと助かります。

  • cos(有理数*2π)=有理数となるのはどういったときですか

    先日、tan1°、sin1°が無理数であるとのご回答を いただきました。 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2209804 cos(n°)が有理数になるのは、1≦n≦89の範囲では、n=60のときになるときだけ、と自分自身で考えたことをお礼の欄で述べましたが、それはしらみつぶしの方法でした。 改めて、cos(2π*p/q)が有理数となる場合はどういったときか、を教えていただきたいです。以後、孤度法を用います。 sinやtanも気になりますが、とりあえずcosがやりやすそうです。 孤度の(有理数*2π)を区間[0,π/2]上の点に限ると、 結論は、次の場合のみであろうと僕は思います。 cos(0)=(-1),cos(π/3)=1/2,cos(π/2)=0 さて、それを示したいのですが、cos(nθ)はcosθの整数係数n次多項式でかけると言うn倍角の公式があります。 http://www004.upp.so-net.ne.jp/s_honma/inequality/tschebyscheff.htm をみると、その最高次の係数は、2^(n-1)です。 定数項は、0または±1です。 つまり、文字を自然数として、 cos(2π*p/q)=r/s と仮定したとき、左辺のq倍角は、 1=cos(2π*p)=[cos(2π*p/q)を変数とする整数係数q次多項式、最高次の係数は2のベキ] になりますが、それが有理数解r/sを持つなら、分母のsは2のベキになることが分かります。 ここで、分母が2のときは、cos(π/3)=1/2などの解がある。 分母が4のときは、・・・、うーん、ここでつまりました。 別の解法でもいいですので、ヒントでもいいですので、tanなどの場合でもいいですので、なにかご教授いただけないでしょうか?

  • 有理数と無理数が無限個あること

    開区間(a,b) は無限個の有理数と無限個の無理数を含むことを証明せよ。 という問題に悩んでいます。有理数の稠密性と有理数と無理数の和が無理数になることを利用するのがヒントらしいのですが、それでもよく分かりません。どなたか詳しい方がいらっしゃいましたら、解説よろしくお願いします。

  • 数学A 等式を満たす有理数

    次の等式を満たす有理数p,qの値を求めよ。 1+√5p+(3-2√5)q=0 全く分かりません(泣) ヒントに a,bが有理数、√cが無理数のとき、a+b√c=0ならa=b=0 ってあるんですがこれをどうにかして利用するんでしょうか… よろしくお願いします。

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • αがαの3乗=5 を満たすとき αは有理数でない

    高校1年の数学の問題です。分野は「命題と集合」です。 「実数αがαの3乗=5 を満たすとき αは有理数でないことを示せ。」 06年度東京学芸大の問題です。 途中まで模範解答を書きます。そのあとがわからないので教えてください。 よろしくお願いします。 (解答) 背理法で解きます。 αが有理数であるとする。 α=n分のm とする。 mの3乗は、5の倍数となる。」 (これからあとがわかりません) よろしくお願いします。

  • (x,y)に有理数があるかどうか

    x,yを実数としたとき(x<y)、区間(x,y)に有理数があることをしめすという教科書の問題を模範解答とは違う方法でやってみたので、間違ってるところを指摘もらえますか?よろしくお願いします。 有理数は上にも下にも有界でないので、p<x<y<qとなる有理数p、qが存在する。 1. (p+q)/2∈(x,y)ならば終了 2. そうじゃない場合 a) y<(p+q)/2 ならば (p+q)/2=q_1とし p<x<y<q_1 b) (p+q)/2<x ならば p_1=(p+q)/2とし (p_1)<x<y<q と区間を狭めていく。 そこからまた 不等式の両端を平均して、、、というのをくりかえす 有理数足す有理数÷2は有理数。 y-xは無限大や無限小ではないので、 有限回のうちに区間(x,y)に平均値を持つような有理数が出てくる といった感じでしめせてますでしょうか。。。?

  • cos(有理数*π)=有理数、などについてお尋ね(長文)

    先日、「cos(有理数*2π)=有理数となるのはどういったときか」 http://oshiete1.goo.ne.jp/kotaeru.php3?q=2212683 という質問に、親切なご回答を頂きました(感謝です)。 結果だけをまとめますと、 「mとnを互いに素な自然数とする。 cos{(m/n)π}が有理数となる⇔n=1,2,3 sin{(m/n)π}が有理数となる⇔n=1,2,6 tan{(m/n)π}が有理数となる⇔n=1,2」 ここで、新たに疑問が浮かびます。 http://www.iis.it-hiroshima.ac.jp/~ohkawa/math/math_prob_analy.htm の問題177で、 「a(但し、0<a<1/4とする。)を有理数とする時、tan(aπ)は無理数である。」 がGaussの整数環がPIDで有る事を使えば、容易に証明出来るとあります。 (僕が考えた証明、多分不備あり。) tan(aπ)が有理数とすると、 tan(aπ)=y/x(x,yは互いに素な自然数)とかける。 Gaussの整数x+iyを考えると、原点との線分がx軸とのなす角度は、 arg(x+iy)=aπ 有理数a=p/qとして、Gaussの整数x+iyをq乗すると、 arg(x+iy)^q=aπ*q=pπ つまり、 (x+iy)^q=実数 http://members.ld.infoseek.co.jp/aozora_m/suuronN/node57.html に書かれていることから、両辺を因数分解すると、単数倍の違いを除いて一意的。 右辺が奇素数を因数に持つとき、上記サイトの定理40より、 それはガウス素数か、(a+bi)(a-bi)の形になるが、左辺はそれを因数にもたないから不適。 右辺が2を因数に持つとき、上記サイトの定理40の上のコメントより、 それは単数倍の違いを除いて2=(1+i)(1-i)なので、左辺は、x+iy=1+iなどの場合に限られる。 このとき、0<a<1/4では、tan(aπ)=y/x=1に矛盾。証明終わり。 この問題は、aを有理数とするとき、tan(aπ)も有理数であるのは、a=整数or奇数/4と主張しています。 これを使って、Gaussの整数の観点から、cos(aπ)が有理数である条件を求めれないでしょうか?