• 締切済み

集合の一致を利用した証明?

大学受験をするにあたって受験勉強をしているのですが、どうしても自分では解決できない問題にぶち当たってしまいました。 数学Aの集合と論理の範囲での問題で、いわゆるチャート式のようなタイプの問題集のものなのですが、この問題ばかりは解説を読んでもどうしても理解できません。 0以上の整数xに対して、C(x)でxの下2桁をあらわすことにする。例えば、C(12578)=78、C(6)=6である。nを2でも5でも割り切れない正の整数とする。 (1)x,yが0以上の整数のとき、C(nx)=C(ny)ならばC(x)=C(y)であることを示せ。 (2)C(nx)=1となる0以上の整数xが存在することを示せ 解答(2) A={C(nk)|k=0,1,2…,99} B={k|k=0,1,2,…,99} とする。C(nk)は二桁以下の正の整数ゆえ、A⊂Bが成り立つ。 さて、i,jを0以上99以下の整数でi≠jなるものとする。 C(i)=i、C(j)=jであるから、C(i)≠C(j) すると、(1)の対偶より、C(ni)≠C(nj) よって、Aの要素はどの二つをとっても異なる。 これより、n(A)=n(B)=100となり、A=Bが成り立つ。 したがって、0≦x≦99なる整数xで、C(nx)=1なるものが存在する。 (2)の解答の意図が全くつかめないのですが、集合を一致させるまでの過程と、集合が一致すればなぜ証明されたのかというところが全くつかめません。 よろしければご教授ください。

みんなの回答

  • banakona
  • ベストアンサー率45% (222/489)
回答No.3

>集合を一致させるまでの過程と Bはいいですよね? 0から99まで「漏れなくダブリなく」整数を並べたものですから。 Aなんですが、これはCによる像なので、その元は0から99までのいずれかになるのは明らかなのですが「ダブリ」があるかもしれません。 例えばC(n・3)=C(n・29)のように像が同じになるものがあるということです。このダブリがないことを示しているのが、「さて、i,jを0以上99以下の・・・よって、Aの要素はどの二つをとっても異なる。」の部分です。 AはBの像とも言えるので、これによりA=Bだと言えます。 >集合が一致すればなぜ証明されたのか これは簡単で、C(nx)=1となるxが存在する、つまりAの中に1があることを証明すればいい。A=Bなので、Bの中に1があれば必ずAの中にも1がある。Bの中に1はありますよね。だからAの中にも1がある。

  • kt1965
  • ベストアンサー率34% (116/339)
回答No.2

回答しておきます。 途中で「対偶」を用いています。「対偶」とは、ご存知の通り、「証明命題A」とすれば、「証明命題Aの全否定」です。もしも、「証明命題Aの全否定」が成り立たないとすれば、その「対偶」である「証明命題A」が証明されたことになります。 その事を用いた証明なのです。 なお、証明命題の仮定を部分否定して証明命題を証明するやり方を「背理法(間接法)」と言います。 では。

  • naozou
  • ベストアンサー率30% (19/62)
回答No.1

個人的にはA=Bは言わなくてもいい気がします。 証明はこんなことを言っています。 Aの要素は0,1,2,...,99のうちのいずれかである。(A⊂B) Aの要素はすべて異なる。C(ni)≠C(nj) Aの要素は100個ある。n(A)=n(B)=100 ならば、Aの要素には必ず1がある。

関連するQ&A

  • σ集合体はボレル集合体の特別な集合体?

    ボレル集合体の定義は 「Xを集合とし,B∈2^Xとする。この時Bが (i) B≠φ (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のボレル集合体という」 σ集合体の定義は 「BがX上のボレル集合体とする。この時Bが (i) X∈B (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のσ集合体という」 と解釈したのですがこれで正しいでしょうか?

  • 数学A 集合

    今高1ですが、大学進学を考えているので 大学の入試問題を解いています。 解答を見てもわからない問題があるので、教えて下さい! 分からないところは f(g(x))とg(f(x)) がどういう意味なのかです。 問題は、 2つの関数f(x)=-x+3,g(x)=x^2+5 を考える。 -50以上50以下の整数の集合 A={-50,-49,・・・,-1,0,1,・・・,50} に対し、2つの集合BとCを B={f(x)|x∈A}, C={g(x)|x∈A} により定める。集合Mの要素の個数をn(M)で表す。 D{f(g(x))|x∈A}, E={g(f(x))|x∈A} によって集合D,Eを定めるとき、n(D), n(E)を求めよ。 という問題です。 解答は 集合Dは、 D={f(g(x))|x∈A}={f(x)|x∈C} と考えられるが、xが異なればf(x)の値は異なるから、 n(D)=n(C)=51 集合Eは、 E={g(f(x))|x∈A}={g(x)|x∈B} 集合Bは-47以上53以下の整数の集合で、絶対値の異なる整数は54個ある。よって、 n(E)=54 です。 2003年の近畿大学・理工学部の改題らしいです。 長くなってすみません<(_ _)> おねがいします。

  • 集合の問題で

    集合A,B,Cはそれぞれ、A={x|xは1以上60以下の整数}、B={x|xは6の倍数}、C={x|xは4の倍数}を 表すとき、集合A∩(B∪C)の要素の個数はいくつか。 という問題の答えが20個というのはわかったんですが、なぜ20個になるかわからないです。 わかる方がいらっしゃいましたら、お願いします。

  • 集合について。

    Aを100以下の自然数の集合とする. また,50以下の自然数kに対し, Aの要素でその奇数の約数のうち最大のものが2k-1となるものからなる集合Akをとする. このとき,次の問いに答えよ. ①Akを求めよ. ②Aの各要素は, A1からA50までの50個の集合のうちのいずれか1つに属することを示せ. ③Aの部分集合Bが51個の要素からなるとき, y/xが整数となるようなBの異なる要素x.yが存在することを示せ. ④50個の要素からなるAの部分集合Cで, その中にy/xが整数となるような異なる要素x.yが 存在しないものを1つ求めよ.この問題をご教授頂けると幸いです。

  • 証明

    a,bを整数とするときZ次の2つの条件(i),(ii)について(i)と(ii)は同値であることを証明する問題です。 (i) a,bはお互いに素である。すなわち、aとbの最大公約数は1である。 (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在する。 という問題です。 参考書の答えに Zを整数の集合とし J={}ax+by|x,y∈z} とおく 定義からJは和と整数倍について閉じている a∈J,b∈J と書いてるのですがよく分かりません。 考え方など教えて貰えたら嬉しいです

  • 数学の証明…

    問題:各位の数字の和が3の倍数である整数は3の倍数である。    このことを3桁の整数について証明せよ。    ヒント:3桁の整数をNとするとN=100a+10b+c(a b c は0から9までの整数、a≠0)とおける。 しっくりいくように書けません。 どなたか、お手本をお願いします<(_ _)>

  • 全順序集合と半順序集合

    x=(x1,…xn) , y=(y1,…,yn) ∈R^n に対して x≦yを Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)y(i) (k=1,2,…,n) によってR^nに関係≦を導入する。 R^nはこの≦に関して半順序集合になっていることを示せ。 また、x≦(にならない)y , y≦(にならない)x となるx,yの例をあげよ。 という順序集合の問題です。 反射的・反対称的・推移的の3つを示せば良いのは分かるのですが、どのように書いて良のか分かりません。 例:推移的を示す 任意のx=(x1,…xn) , y=(y1,…,yn) , z=(z1,…,zn) ∈R^n に対して Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)y(i) かつ Σ(i=1からkまで)y(i) ≦ Σ(i=1からkまで)z(i) ならば Σ(i=1からkまで)x(i) ≦ Σ(i=1からkまで)z(i)  は成り立つ。 このように、そのまま書けば良いのでしょうか・・・? それから、最後の例をあげよのところは、全順序集合にはならないための反例になっているのだと思いますが、どうしても思いつきません。 ∞を考えるのでしょうか・・・? そもそも全順序集合は半順序集合が成り立つことが前提みたいに習いましたが、反対称的の 任意のa,b∈Xに対して aRb,bRa⇒a=b ここで、aRbとbRaが成り立つことを言ってしまっているので、必ずaRbかbRaになっているような半順序集合は全順序集合という定義も意味がないような気がしてしまいます。 よろしくお願いします。

  • 証明

    何度も失礼します。 問題は、a,b,cはどの2つも1以外の共通な約数を持たない正の整数とする。a,b,cが、a^2+b^2=c^2を満たしているとき、次の問いに答えよ。 (cは奇数である) (1)a,bの1つは4の倍数であることを示せ。 証明は、cは奇数であるから、,bのうちいずれか一方は偶数で、他方は奇数である。いま、偶数の方をaとしてもよい。aが4の倍数でないと仮定すると、a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)とおける。 a^2+b^2=(4k+2)^2+(4m±1)^2 =8(2k^2+2k+2m^2±m)+5 c^2=(4n±1)^2=8(2n^2±n)+1 よってあまりが違い、矛盾するので正しい。 となっているのですが、{a=4k+2,b=4m±1,c=4n±1(k,m,nは整数)}ですが一つ目の疑問は(k,m,nは整数)ですが、整数では、例えばmが-3とかのとき明らかに-になるのでだめですよね?bが正の整数を大前提にということでしょうか?もうひとつは、これはb,cは奇数であることをいいたいのだからa=4k+2、b=2m-1,c=2n-1(・・・m,nは自然数)としてはいけないのでしょうか?それでもできるとおもうのですが。b=4m±1,c=4n±1である理由があるのでしょうか?

  • 二次方程式の問題

    次の問題の解答をお願いします。 α=2-m√3、β=2+m√3までは求められたのですが・・・。 [1]mは負でない整数とする。xについての2次方程式 x^2-4x-3m^2+4=0の2つの解を α、βとおく。α≦βであるとき、 α=ア-m√イ、β=ウ-m√エ であるから、 2次方程式 x^2-4x-3m^2+4=0が整数を解にもつとき、その整数の2つの解を α´、β´とおく。α´、β´が、α´^2+β´^2=32・・・・・・(1) をみたすとき、mとkとの間には カm^2-k=キ が成り立つ。 したがって、(1)をみたすmとkの値の組(m,k)は (m,k)=(ク,ケコ),(サ,シス) である。ただし、ク<サとする。 [2]Uを2桁の自然数全体の集合とし、その部分集合をA、Bを次のように定める。 A={x|xは3の倍数} B={x|xは7の倍数} 集合Xの要素の個数をn(X)で表すとき n(A∨B)=セソ n(¬A∧B)=タ n(A∨¬B)=チツ である。 また、集合(¬A¬∨¬B)∨(A∧B)をCとおく。 この集合Cと同じものを表す集合は、テとトであり、n(C)=ナニである。 テ、トについては、当てはまるものを 0~3 から一つずつ選べ。 0・・・(¬¬A¬∨¬¬B)∨(¬A∧¬B) 1・・・(¬A∧B)∧(A∨¬B) 2・・・(A∨¬B)∨(¬A∧B) 3・・・(¬A∨B)∧(A∨¬B) 0~3については、表記がわかりにくいため、画像を添付しました。

  • 外測度と開集合・閉集合について

    添付の画像について2つ程質問があります。 (下層に画像の問題についての補足のせています) (1)始めのA=∪[k→∞]Akである、のところがなぜ成り立つかがいまいち分かりません。 (文脈から「G^cは閉集合。よって…」とあるので開集合・閉集合の定理の中でA=∪[k→∞]Akが言えるものがあるのかなと探してたのですが分からず…) (2)「もし、Σ[j=1→∞]Г(Dj)<∞であればlim[k→∞]Σ[j≧k]D(Гj)=0である…」の部分、本当はlim[k→∞]Σ[j≧k]Г(Dj)=0(誤植?)かと思うのですが、これもなぜ0になるかが分かりません。 以下画像の問題の補足をします。 問題は 「R^n上の外測度Гと、 R^n の部分集合E1, E2 に対して、d (E1, E2)[距離関数]>0ならばГ(E1UE2)=Г(E1)+Г(E2)が成立しているとする。 このとき A をR^nの部分集合, G を開集合で A⊂GとしAn={x∈A|d(x,G^c)≧1/k} (k=1,2,...) とおくと、 lim[k→∞] Г(Ak)=Г(A) が成り立つ。」 というものです。G^cはRの補集合です。 [証明] 冒頭の証明は「Gが開集合なのでG^cは閉集合。よってA1⊂A2⊂…⊂Ak⊂…AかつA=∪[k→∞]Akである。」 とあり、以降続きが画像の部分です。 ご教授頂けますと幸いです。 何卒宜しくお願い致しますm(_ _)m