• ベストアンサー

フェルミ共鳴について教えて下さい。

IRなどで観察されるフェルミ共鳴について教えて下さい。 これはある振動モードのピークの高次のピークと別の振動モードのピークが重なるときに、2つの振動モードが相互作用し合い、基準ピークが大きく観察される、というような現象だと思うのですが、 手元にある実験化学講座には、高次の非調和項が近接する振動状態と混合する場合のことを指す、書いてあります。 疑問なのは、 ・なぜ高次の振動モードと別の振動モードが混ざると共鳴が起こるのでしょうか? ・これによって引き起こされるのは、基準モードのピークが大きく観察されるということで合っていますか? ・普通の高次の項ではなく非調和項であることには何か意味があるのでしょうか? フェルミ共鳴に関して書かれてある書籍があまりにも少なくて理解しきれませんでしたので、どなたか教えて下さい。 或いは詳しく書かれてある書籍を教えて頂けないでしょうか?

  • 化学
  • 回答数6
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 101325
  • ベストアンサー率80% (495/617)
回答No.6

> 同じ原理だということを仰られているのだと思うのですが、 すみません。言葉が足りませんでした。「……同じ理屈です(少なくとも数式の上では)」と書いたのは、「どっちも行列の固有値問題になりますよ」という程度の意味でした。「二つの水素原子の原子軌道から、分子軌道が二つ(結合性軌道と反結合性軌道)できるのと同じ理屈です」の方がよかったかも知れないです(←よく分からなかったら無視して下さい)。 > 中間的な振動モードが存在出来ないのは量子力学から要請なのでしょうか? 基準振動モードは、古典力学で考えても出てきます。古典力学系で中間的な振動モードを作ろうとすれば、基準振動モードの重ね合わせで作ることになりますけど、このような中間的な振動モードは、定常状態にはなりません。つまり、位相や振動数や振幅が時間的に変動する、非定常状態になります。ですので、うるさいことをいえば、中間的な振動モードが存在出来ないのは古典力学でも同じ、ということになるでしょう。 ですけど、うるさいことをいわなければ、「振動モードが量子化されているため、このような中途半端な振動モードは(定常状態としては)存在しえない」と説明する方が、分かり易くていいと私も思います。

その他の回答 (5)

  • 101325
  • ベストアンサー率80% (495/617)
回答No.5

> 例えば90°とか間の位相であっても、振動モードの励起はあり得そうな気がする 起こりそうですけど、起こりません。  二酸化炭素分子O=C=Oの左右のC=O結合の伸縮振動が、同位相(両方のCO距離が同時に伸び縮みするモード)で起こると全対称伸縮振動になり、逆位相(一方のCO距離が伸びると他方が縮むモード)で起こると逆対称伸縮振動になるのと、同じ理屈です(少なくとも数式の上では)。  ケトンのカルボニル基のCO伸縮モードが1700cm-1くらいなので、二酸化炭素分子O=C=OのCO伸縮モードも1700cm-1くらいになりそうなものですけど、実際には1333cm-1(全対称伸縮モード)と2349cm-1(逆対称伸縮モード)に「分裂」します。中間の位相の振動モードは、ありません。 共鳴に関しては、以下に岩波理化学辞典第5版を引用しますので、参考にして下さい。 ---------- 共鳴 [1] 振動系に加える周期的外力の振動数を振動系の固有振動数に近づけていくにつれて,振動系の振幅が急激に増加する現象をいう.(以下略) [2] (省略) [3] 量子力学では,多くの粒子(あるいは部分系)からなる系において,粒子間の相互作用の一部を無視した場合の縮退した定常状態α,β,…を表わす波動関数をΨα,Ψβ,…とすると,相互作用を考慮した場合の系の波動関数Ψは,第1近似として線形結合   Ψ=aΨα+bΨβ+… の形に表わされる.この場合,状態α,β,…は量子力学の意味で共鳴しているという. [4] (省略) ---------- フェルミ共鳴は、[3]の意味での共鳴ではないかと私は思います。

MASSYY
質問者

お礼

お礼が遅れてしまい申し訳ありません。 > 二酸化炭素分子O=C=Oの左右のC=O結合の伸縮振動が、同位相(両方のCO距離が同時に伸び縮みするモード)で起こると全対称伸縮振動になり、逆位相(一方のCO距離が伸びると他方が縮むモード)で起こると逆対称伸縮振動になるのと、同じ理屈です というところなのですが、つまり全対称伸縮振動と逆対称伸縮振動はあるが、その真ん中の振動モードは存在出来ないということと、同じ原理だということを仰られているのだと思うのですが、 そういえば、これってなぜなのでしょうか? 中間的な振動モードが存在出来ないのは量子力学から要請なのでしょうか? 振動モードが量子化されているため、このような中途半端な振動モードは存在しえないということで良いのでしょうか?

回答No.4

 共鳴現象はそう珍しいものでは有りません。非常に簡単な実験、1本の横糸を張っておいて、それに2個の振り子をつるし、片方を振動させると他方ととの間で振幅を交換し合う現象が簡単起こります。単純なのに結構面白いです。√2倍の長さの振り子(周期2倍)とも共振を起こすような現象とかも試すことができるでしょうね。振り子をつるす「横糸」はある意味分子内力場、誘電体や双極子そのもの、つるす「振り子」は分子内基準振動と考えれば振動間の相互作用の基本モデルになるでしょうね。  101324さまの回答の通り、分子内力場ではは波動関数の混成に近い現象と考えるとのことのようです。縮重していなくてもFermi共鳴がおこり、2ν1≒ν2の場合、a・ψ(ν2)+b・ψ(ν2);a^2+b^2=1からψ(2ν1)の吸収・散乱が活性(ただし2ν1,ν2は摂動を受けもとの2ν1,ν2とは違う(2ν1)´,(ν2)´になるような、分裂に似た現象が生じることがある)になる、ν1+ν2≒ν3の場合にも同様なことが可能、より多様な混合においても可能なことがあるということのようです。  古い資料を持ちいたために「狭い事実」を基にした回答になってしまってたことをお詫びします。頑張ってください。 (上記サイトの内容に惹かれ、ほかの文献を参照してて回答が遅れました。ごめんなさい。)  

  • 101325
  • ベストアンサー率80% (495/617)
回答No.3

> 結局、フェルミ共鳴というのは、(中略) > ν1の方の縮重がとけて2本に観察されるということなのでしょうか? いいえ。違います。2ν1のモードは、本来は禁制遷移のために吸収ピークが観測されないはずです。しかし、たまたま2つの振動モードが2ν1≒ν2の関係にあった場合に、ν2の吸収ピークに加えて、2ν1のピークが観察されます。そしてさらに、2ν1のモードとν2のモードの間の相互作用のために2ν1≒ν2の偶然縮重がとけるので、それぞれのピーク位置がシフトして、予想とは異なる位置に2本のピークが観察されることになります。 または、振動状態ν2の波動関数が、振動状態2ν1の波動関数と同位相で混ざった状態ν2+と、振動状態2ν1の波動関数と逆位相で混ざった状態ν2-とに分裂した、と考えてもいいです。 > この説明だとν1がもともとは縮重していたということになりますが、 ν1ではなくてν2ですよね。はい。縮重していません。#1さんの説明は、間違っています。 > これらの2本のピークが重なることによって、特にピークが分裂するわけでもピーク強度が強くなるわけでもなく フェルミ共鳴が起こらなければ、2ν1のピークは禁制遷移なので観測されません(あるいは通常の結合音や倍音のように弱い吸収ピークになります)。本来は観測されないはずの2ν1のピークがフェルミ共鳴によって現れたので、スペクトル上では、ν2のピークが分裂したり強度が強くなったりしたように見えるわけです。 > ピークが分裂するというのがフェルミ共鳴ではないのでしょうか? はい。そうです。ただし、分裂幅がピークの線幅よりも小さい時には、基準モードのピークが一本線のまま、予想よりも大きくなったように見えます。このときスペクトル上ではピークは分裂していませんけれども、これもフェルミ共鳴といいます。質問文に「基準モードのピークが大きく観察される」とありましたけど、分裂については触れていませんでしたので、質問者さんが分裂のないフェルミ共鳴について聞いているのかも、と考えて#2のような回答をしました。混乱させてごめんなさい。 > 2つの振動モードの吸収位置が近いからといって共鳴する理由 振動モードの間の相互作用の起源は何か?ということでしたら、ごめんなさい、私にも分かりません。振動モードの間の相互作用が存在すること、を天下りで認めてしまえば、「本来は禁制遷移の振動モードが、基準モードと混じり合うことによって許容遷移になる」と説明できます。これは、「基準モードからピーク強度を“借りる”ことで、高次の振動モードのピーク強度が大きくなる」とも表現されます。  なお、振動モードの対称種が違ったり、振動している原子団の距離が遠いときには、振動モードの間の相互作用が存在しないので、2つの振動モードの吸収位置が近くてもフェルミ共鳴は起こりません。 長い説明の割には中途半端な説明でごめんなさい。詳しくは、 http://comp.chem.tohoku.ac.jp/hirose/chap1-2.pdf の5ページをご覧下さい。

MASSYY
質問者

お礼

ご回答ありがとうございます。 かなり理解が深まりました。 でもどうしても分からないことが2つあります。 一つは、 >または、振動状態ν2の波動関数が、振動状態2ν1の波動関数と同位相で混ざった状態ν2+と、振動状態2ν1の波動関数と逆位相で混ざった状態ν2-とに分裂した、と考えてもいいです。 というところなのですが、同位相、逆位相というのはそれぞれ0°と180°に相当するわけですが、例えば90°とか間の位相であっても、振動モードの励起はあり得そうな気がするのですが、つまり2本のピークが出るのではなく同位相から逆位相にかけて連続したピークになっても良さそうな気がするのですが、なぜそうならないのでしょうか? 二つ目は、教えて下さったURLも見てみましたが、共鳴の起こるメカニズムが分かりませんでした。 他の方でも構いませんのでどなたか教えて下さい。

  • 101325
  • ベストアンサー率80% (495/617)
回答No.2

・なぜ高次の振動モードと別の振動モードが混ざると共鳴が起こるのでしょうか? 高次の振動モードと別の振動モードが混ざることを共鳴と呼んでいるだけですので、「共鳴」という言葉にあまり引きずられない方がいいです。 ・これによって引き起こされるのは、基準モードのピークが大きく観察されるということで合っていますか? 基準モードのピークが大きく観察されると考えるのではなく、本来は禁制遷移のためにピーク強度が小さいはずの高次の振動モードのピークが、フェルミ共鳴によって大きく観測される、と考えた方がいいです。  ピークの線幅が広くて,高次の振動モードのピークと基準モードのピークとがスペクトル上で重なりあう時には、基準モードのピークが、フェルミ共鳴によって見かけ上大きくなったようにみえます。  ピークの線幅が狭くて,高次の振動モードのピークと基準モードのピークとがスペクトル上で重ならない時には、基準モードのピークが、フェルミ共鳴によって見かけ上二本に分裂したようにみえます。 ・普通の高次の項ではなく非調和項であることには何か意味があるのでしょうか? フェルミ共鳴は倍音でも結合音でも起こります。「普通の高次の項」も非調和項のひとつです。 なお、「高いエネルギー順位の基準振動が縮重していなければ分裂としては観測されない」ということはないです。基準モードが縮重していなくてもフェルミ共鳴は観測されます。

MASSYY
質問者

お礼

お二方ご回答ありがとうございます。 でもやはり理解出来ませんでした。 高次の項が全て非調和項であることだけは分かりました。 結局、フェルミ共鳴というのは、たまたま2つの振動モードの吸収ピークが、2ν1≒ν2の関係にあった場合に、 ν1の方の縮重がとけて2本に観察されるということなのでしょうか? 理解出来ないのは、この説明だとν1がもともとは縮重していたということになりますが、なぜ縮重しているのでしょうか?特に縮重する原因が見あたらないのですが・・・ それと101325様の説明ですと、これらの2本のピークが重なることによって、特にピークが分裂するわけでもピーク強度が強くなるわけでもなく、ν2のピークが2ν1にかぶってくるために、2つのピーク強度を足し算した場合あたかも2ν1が大きくなって見えたというように解釈出来るのですが、そうではなくピークが分裂するというのがフェルミ共鳴ではないのでしょうか? そしてもっとも分からないのは、2つの振動モードの吸収位置が近いからといって共鳴する理由が分かりません。 よろしくお願いいたします。

回答No.1

● 分解能が上がったときに、二酸化炭素のスペクトルで、本来現れないはずの吸収が現れ、それをどのように考えるかということが問題になったのですね。一番最初にFermiがこの解釈を与えたことからFermi共鳴といわれるわけですが、その解釈は「1つの基準振動ν1の倍音2ν1が他の基準振動ν2に近い場合には、その相互作用が起こり、エネルギー順位の分裂が起こり、異なる吸収・散乱として観測される」というものでした。 ● 調和振動子近似では倍音は生じない。倍音は、非調和成分の存在によって生じる。  調和振動子近似では、固有値からは基準振動νしか出てこず、エネルギー順位はその整数倍になります。E_n=nhνです。赤外線吸収・ラマン散乱はほとんどの場合Δν=1の遷移で起こるから、吸収・散乱が起こる場合にはΔE=hνとなって、その振動の基準振動で決まる振動数ν以外には観測されないはずです。  ところが実際にはごくごくわずかならが2ν、3ν・・・に吸収が見られるという実験事実から、原子原子間の結合エネルギーの調和振動子近似は完全でないことになります。倍音・3倍音・・・そのような遷移を起こさせる影響を非調和振動子成分とか言うわけですね。 >>『普通の高次の項』ではなく『非調和項』であることには何か意味があるのでしょうか?  基本的な用語を押さえてください。 <調和振動子近似>では、振動エネルギーがフック型のポテンシャル(1/2)・k・(Δx)^2で近似できるとして扱い、このような近似を調和振動子近似といいます。これはポテンシャルU(x)を平衡点r_eの近傍r_e+Δrでテイラー展開し、 U(r_e+Δr)=U(r_e)+(∂U/∂r)Δr+(1/2)・(∂^2U/∂r^2)(Δr)^2+(高次項) で、U(r_e)をエネルギーの基準にとり、平衡点では(∂U/∂r)_(_re)=0であり、(高次項)は無視できるとした近似です。そのときは、基準振動以外の振動数は一切出てきません。  従って<非調和成分>は無視したポテンシャルの『Δx^3以上の高次成分』によって生じることになります。『普通の高次の項ではなく』という表現は『???』ですよ。倍音を生じた=3次以上の高次項=非調和なのです。非調和成分からしか倍音は生じません。  以上の通り、<『基準振動の倍音』が生じるのは、結合エネルギーが非調和成分を持つためである。しかし、本来なら『倍音での吸収・散乱はΔν=1のときに比べて、はるかに小さい』(=明瞭な吸収や散乱としては観測されない)はずである。>ということが前提です。 ●ところが、分子の対称性からCO2のIRでは667,1340,2350cm^-1の3本の吸収だったものがラマン散乱で1340cm^-1のところが1285cm^-1と1388cm^-1の2本に分解されたのです。1340cm^‐1の基準振動は本来は縮重振動であり、分裂せずに1本の吸収として観測されたのですが、ラマン散乱では、「はっきりと観測される2本の散乱」に分裂したわけです。  それでfermiの解釈です。667×2=1334cm^‐1となり、これが1340cm^‐1と非常に近い。そのためだと考え、元は縮重して区別のできなかった2つの振動が、667cm^-1の倍音との共鳴を起こし、縮重していたこの2つの振動状態で共鳴の仕方が違うためにそれぞれが違うエネルギーを持つようになりエネルギーが分裂してしまうと考えました。その摂動エネルギーの変化を求めると、『2ν1≒ν2の関係が有るときに、この差が小さければ小さいほど分裂が大きくなり無視できなくなる』ことを示したのです。  たまたま2ν1≒ν2の関係がありこの差が非常に小さな値にならなければならず、しかも元の基準振動が縮重した状態でなければ分裂も起こらない。他の分子においてこのような『偶然』はあまり起こらないはずですから、『偶然の縮重』とも言われることが有るとのことです。 ●以上から、ある基準振動の倍音が生じる→非調和振動によるもの。 ●たまたま2ν1≒ν2のような関係がある二つの分子内基準振動があり、しかも高いエネルギー順位の基準振動が縮重していなければ分裂としては観測されない。もともとは『縮重して1本と考えていた2つの振動状態』が、共鳴現象で『異なる相互作用をしてエネルギーの差が生じて2本に分かれる』のであって、最初に縮重振動であることが前提のようです。近ければ勝手に分裂するものではない。 ●しかし、明瞭な吸収や散乱として観測されるので、この『フェルミ共鳴の相互作用は思っている以上に強い相互作用である』と考えなければならない。 という結論が出てきます。  理論計算と、実測からえられた結果とを総合して導いた『やや折衷的な理論』といえなくもないのでは? (しかしfermiがこんなところでも仕事をしているのには驚きです。)

関連するQ&A

  • 物理における波動現象の共鳴について

    波動現象に共鳴というものがあります。振動解を線形的に足しわせるようなことをして式を展開したときに分数となり、その分母がゼロになるような条件が共鳴あるいは共振というものです、という説明があります。分数で分母がセロになるというようなことは論理が破綻するようなものだと思います。しかし、波の相互作用(3波、4波)によって別の波が励起されるというような説明もあります。波の共鳴とその後の発展についてどのように理解していくのでしょうか。普通に考えると論理が行き詰まるように見えるのですが。

  • 赤外分光法について

    赤外分光法についての問題で 「赤外分光法は分析化学においてどのような役に立つか、振動項、選択律、基準振動、非調和性の単語を使って100字程度で説明しなさい」 というのがわかりません、どなたかご教授ください。

  • 2原子からなる分子の格子振動

    最近接原子間の力定数が交互にCおよび10Cである線形鎖のノーマルモードを考えます。 運動方程式を2本たてて、基準振動解を仮定して分散関係を求めるというところまでは教科書を追っていけば理解できるのですが、このモデルが水素分子のような2原子分子の結晶と似ているという箇所がよく分かりません。どこが似ているのでしょうか?

  • 固体物理学-格子振動に関する課題

    レポート課題が出たのですがまったく分かりません。誰か解いてください。お願いします。 2 種類の異なる質量M1 とM2 を持つ原子が交互に2N 個並ぶ一次元鎖を考える.最近接原子同士が同じ力の定数k で相互作用している.振動方向は鎖に垂直なひとつの方向のみを考えるものする.格子定数をaとするとき, (1) 一次元鎖における格子振動の運動方程式をたてなさい. (2) この一次元鎖の格子振動スペクトルを求めなさい. (3) q = π/a のとき,2 つのモードの格子振動の様子を図示しなさい. (4) 第一ブリリュアンゾーンにその分散関係を図示しなさい.ただし,M1 = 5M,M2 = 7M とする.

  • 金コロイドの色

    金コロイド(金ナノ粒子)の色について教えてください。 金をナノサイズまで加工していくと美しい赤色を呈することを習いました。この現象は、金属表面の自由電子の振動と光(電場)が共鳴するから、ということまで学びました。 ところが、別の文献等によると金コロイドを2nm以下まで小さくしていくと、赤色はだんだん退色していき、530nmの吸収ピークが消失することが記載されていました。 どうして2nm以下まで小さくしていくと530nmのピークがなくなってしまうのでしょうか? プラズモン共鳴自体に変化がおきるのでしょうか。量子サイズ効果と関連付けて説明できるのか等考えましたが私にはわかりませんでした。 詳しい方いましたらどうか教えてください。

  • 共振とはなんでしょうか?

    「共振」(あるいは「共鳴」)について、物理的に、しかし領域特異的でないという意味で包括的に、論じてほしい、です. 目的は、電磁波工学における電気的共振を、納得して理解をしたいところにあります.いわゆる教科書の説明では、LCR回路とか細かい話へいく傾向があり、腑に落ちない.腑に落ちる理解のため、いったん、この領域(電磁波工学)を越えて、核磁気共鳴(NMR)とか、電波天文学とか、分光学(分子振動)とか、音響学とかまで範囲拡大し「共振」の最大公約数としての、記述枠組みを得たい. 背景: 例えば、電磁波の吸収にともなう電子の励起も「共振」とか「共鳴」とかの概念に合致すると思います. 一方、FMとかTVの電磁波と空中線・受信機の相互作用「共振」と、当然言うと思います. 他には、電子レンジの中で、マイクロ波を受けて水分子が分子振動するのも、「共振」とか「共鳴」とか言うと思います. さらに、音叉が音を介在させて、他の音叉を振動させるのも、「共振」とか「共鳴」とか言うと思います. また、そんなによく知らないのですが、核磁気共鳴(NMR)では、周期変動する磁場変化を受けて原子の中の電子?のスピンが反転、反転を繰り返す、つまり、「共鳴」するようだったと思います. さらに、天文のジャンルでも、巨大なレベルで「共鳴」とか、「共振」とかの具体例と研究があるのではないかと推定しています.(よく知らない). 予想: 私見では、「離散的なエネルギー準位」「波によるエネルギー伝達」「振動子が、あるエネルギー準位から、別のエネルギー準位へ、ジャンプ」などの用語が骨格となるか…と考えています.しかし、それにとらわれず、別の枠組みもあるのでは?と思います.

  • 高温気体の定積比熱に対する振動モードの寄与につい

    一般に常温付近では、2原子分子気体の振動モードは凍結されて、比熱には関与しないとされています。 しかし、今回300℃~1200℃での2原子分子の振る舞いを考える必要があり、 まずはとっかかりとして定積比熱を見積もろうとしたところ、 このサイトにて、アインシュタインの比熱式を利用して定積比熱の振動項を見積もる回答を2~3見つけました。 ところが、アインシュタインの比熱は、1つの粒子あたり3方向のバネで拘束された固体の比熱を記述するものであり、一つの分子あたり1つのバネを持つも、そのバネで相互に固定されていない2原子分子気体を考えるには少し飛躍があるように感じます。 そこで、このアインシュタインのモデルを利用して気体の定積比熱に対する振動モードの寄与を考えている論文や文献を述べていただければと思います。

  • 最小作用の原理の停留点を共鳴点と考えうるか

    私は習ったことが無いので、最小作用の原理について皆さんにお聞きします。 最小作用の原理ではラグランジュアンの停留点となる解を探すそうです。 このラグランジュアンの停留点をみると、その性質から私には共鳴点における停留、共振点にみえるのです。 最小作用の原理を習った方は、先生からの話に、ラグランジュアンの停留点について、共鳴となにか関連有りそうな、または共鳴とみなしてはいけないというような説話を聴いてはいないでしょうか。  そういう共鳴に関する話があったら何でもよいので教えて下さい。  ポテンシャルエネルギーと運動エネルギーと化学エネルギーなどを足すと、物質の持つエネルギーの総和ですが、  ラグランジュアンはポテンシャルエネルギーから運動エネルギーを引いた差分だそうです。  その計算をすると、なぜか、加速度とか万有引力、屈折の公式の含まれた関数形で最少作用の原理の解が成立するそうです。  最少作用の原理の中で、加速度や万有引力が含まれ解決する不思議は、もし世の万物の運動のずべてが共鳴の一形態なら当然に成り立つでしょう。    そして、この世のいろいろな現象をかえりみると高校の地学で習った節理という岩石の形状が共鳴の結果かもしれないと気が付きました。 だから私はこの世が共鳴しているのではないかと疑いを持ちました。  節理は結晶の形状のひとつと同形に見える大きな岩石の形です。 ところで結晶には分子という結晶形状の最小単位があります。  ところが節理には分子の様な最小単位の結晶形状が決定できません。  不思議を私は分子の様な結晶の単位が無い節理の形状に感じました。  なのに結晶と同じように節理には大小のスケールがあり、同じ形状を保ちます。  節理には結晶のような分子の単位がないので、形状の成り立ちを分子では説明不可能です。  元素や分子という単位の認識が現代科学の要諦、物差しとなる基礎でしたが、もしかすると見ることのできる元素や分子ではなく、みることのできない共鳴ですが、それでも共鳴こそを物差しとして、物理を考えるべきなのかもしれません。  ところで結晶の形は三次元空間のフラクタルであるとみなせますが、結晶の辺の大きさはフラクタルの同形の繰り返しが辺の大きさの階層に表れているようにみえます。すなわち結晶にはフラクタル共鳴が観察できるのです。  結晶は元素の位置が座標上の定点にとどまりますが、宇宙には座標上の定点に質点がとどまらないが、やはりフラクタル共鳴らしい現象が見つかります。  太陽の周りの惑星の公転運動は、太陽の天の川銀河に対する公転という距離スケールの階層を繰り返して公転運動をしています。  この公転運動がフラクタル共鳴に見えます。  御存じのように元素単位の原子核と電子の組にも公転と同じ原子模型があります。  結晶と公転には共通点もあります。ケプラーの法則で有名なケプラーは宇宙の調和という本で、公転を和音振動と見立てられることと、もうひとつ、公転の軌道径がケプラー立体という結晶に似た内接立体正多角形で見立たてられると述べています。  ヒマワリの等角螺旋、植物のロマネスコの等角螺旋とおなじ等角螺旋を描くべきな、万有引力の伝搬に有限速度なら等角螺旋を描くべき公転の軌道が、等角螺旋とならずに楕円軌道となるのはなぜか。私の興味を引きます。 公転はもしかすると時間の結晶なのかもしれません。たて×よこ×たかさの三次元と時間を合わせた4つの次元は数式のなかで、次元として対等の重みをもつのだから、形状に結晶が表れるなら、時間にも結晶が表れるべきです。  1次元線分上の結晶はフィボナッチ数。  2次元面上の結晶は黄金比。  3次元立体上の結晶は僕らが知っている結晶自身。  4次元立体上の結晶は公転の楕円軌道・・・  このような次元に対する階層性は超球にもあります。 n-次元超球体の体積率https://ja.wikipedia.org/wiki/%E8%B6%85%E7%90%83%E3%81%AE%E4%BD%93%E7%A9%8D     すると3次元の結晶に3次元の超球が含まれる予想がうまれます。   実際にそういう物理現象があるのです。  この超球の関数はたとえば黒体放射(空洞放射)の現象に含まれます。  実際の黒体放射や空洞放射には球の形状が存在しないのに、3次元の球殻中に立方方眼の格子点が幾つ含まれるかという密度の計算のために、超球が用いられます。  ところが球体も立方格子も黒体放射、空洞放射の実験装置には存在しません。  球体を式に取り入れるのは、存在しない空想物を含めてはならぬ物理の原則に矛盾します。  もちろん立方格子も実験装置には存在しないので、取り入れてはならぬ空想物です。  空想物の2つを同心に座標を与えるのも黒体の方程式の矛盾の一つです。  物理の方程式には常に現実の形状寸法を反映した数値以外を用いてはならない原則があります。  物理の方程式には架空の空想物を含めてはならないのです。 ところが、黒体放射の方程式には、現実の黒体や空洞や炉の形状にない球の形態が含まれているので大原則に違反している矛盾があります。 だから物理学者は、全ての現象の中に内在する共鳴があると予想をするべきだとは思いませんか。 わたしはこれからその共鳴を証明したいと考え始めています。

  • 共鳴について

    こんばんは!。 共鳴する場所というのはその共鳴する物質に特有なのでしょうか? 例えば同じ部屋で同じ音さを使って、 長さが等しいガラス管と金属管では共鳴する場所は違うのでしょうか? 皆様よろしくお願いします。

  • 共鳴って・・・

    共鳴とは共鳴吸収と共鳴放射この二つをあわせて共鳴っていうんでしょうか?それとも次の準位に一致するエネルギーの吸収のことを指すんでしょうか? よろしくお願いします。