• 締切済み

0の0乗は1、にしたい(その3)

jokyojuの回答

  • jokyoju
  • ベストアンサー率45% (10/22)
回答No.12

No11です。 >このため0^0=0とすると通常の指数の法則使えなくなります。 は0^0=1のあやまりです。 これは私の個人的意見ですが、 0/0も割り算を掛け算の逆算であるという考え方をとれば a/bはbを掛けたらaになる数と考えれば 0/0は1でも2でもどんな数でも成り立つため不定といえるでしょう でもたとえば0/0=1と定義すると 0/0+0/0=(0+0)/0=0/0となり    2=1となってしまい通常の四則の計算の法則が成り立たなくなります。 0^0も極限のとり方により1でも2でもどんな数でもなりますが。 No11で書いたように0^0を定義すると指数の法則が成り立たなくなる場合ができるのではないでしょうか。  

fusem23
質問者

お礼

>0^0も極限のとり方により1でも2でもどんな数でもなりますが。 これは、今後否定して行きますので、お待ちください。 #否定の仕方は特殊ですが… ありがとうございました。

fusem23
質問者

補足

この質問の内容も含めた、新たな質問を行いました。 http://oshiete1.goo.ne.jp/qa4381009.html

関連するQ&A

  • 0の0乗は1、にしたい(その4)

    http://oshiete1.goo.ne.jp/qa4347011.html http://oshiete1.goo.ne.jp/qa4355129.html -- 続き http://oshiete1.goo.ne.jp/qa4375134.html -- その3 の続きです。 0^0を極限値から求める方法について考える。 候補は、次の3つである。(右極限値のみ考える) (1)lim[y→+0]0^y (2)lim[x,y→+0]x^y (3)lim[x→+0]x^0 (1)について、lim[y→+0]0^y=0である。しかし、P=0^0と置くと lim[y→+0]0^y =lim[y→+0]0^(0+y) =lim[y→+0]0^0*0^y =lim[y→+0]P*0^y =P*lim[y→+0]0^y =P*0=0 つまり、この極限値は0^0の値とは関係なく0となるので、0^0は決定できない。 (2)について、極限値lim[x,y→+0]x^y=Lが存在するとは、 任意のεに対して δx,δy を適当に選べば、次のことが成立することである。 ∀ε>0, ∃δx,δy>0 s.t. ∀x,y∈R, 0< x-0 <δx, 0< y-0 <δy ⇒ |x^y-L|<ε ところが、x→0の値とy→0の値は異なるため、次の様に修正を行う。 ∀ε>0, ∃δx,δy>0 s.t. ∀x,y∈R, δx/2< x-0 <δx, δy/2< y-0 <δy ⇒ |x^y-L|<ε (x/2)^y=x^y*(1/2)^y≒x^y (|y|≪1) x^(y/2)=√(x^y) であるので、任意のεが存在するためには、L=0またはL=1でなければならない。 しかし、x>0, y>0 であれば x^y>0 であるので、L=1 である。 (3)について、lim[x→+0]x^0=1であり、 lim[x→+0](x+y)^0=1 も任意のy∈Rで成り立つ。つまり、(1)のような問題はない。 また、xの逆数(乗法の逆元)について (A)x*x^(-1)=x^1*x^(-1)=x^(1-1)=x^0=1 (B)1=□*xの□を1/xと表す という2つの意見があり、xの逆数はx^(-1), 1/xの2つがある。(続きの#49) (A)と(B)で定義される逆数が等しければ、 x^(-1)=1/x これがx=0^0でも成り立つとすると、 (0^0)^(-1)=0^(0*(-1))=0^(-0)=0^0=1/0^0 よって、0^0=1である。 いずれも、0^0=1を否定しないか、それを肯定しています。 この考えに、問題はありますか?

  • 0の0乗は1、にしたい(続き)

    http://oshiete1.goo.ne.jp/qa4347011.html の続きです。 0の0乗の値について、不定だとか未定義だとかの意見があります。 でも、1と定義しても無矛盾だし、1以外では矛盾が生じます。 そこで、べき乗(累乗)の定義を  x^0=1  x^n=x^(n-1)×x (nは自然数) としてしまえば、0^0は当然1になります。 #負の整数乗、有理数乗、実数乗などへの拡張は、従来のような方法で行われるとします。 この定義の仕方には、問題があるのでしょうか? なお、常識的には…という話は、遠慮願います。 #Wikipediaも変わりますので。 これまでの議論で主張したこと: (1) 従来のべき乗の定義は、1から始まるので不自然。加法や乗法は0から始まる。 (2) 従来のべき乗の定義との違いは、0^0の値についてだけである。 (3) 0及び正の整数乗は、すべての実数に対して計算できる。負の整数乗は正の整数乗の逆数として計算できる。(0のべき乗以外) (4) 0^y=0という式はy<0で成立しない。それをy=0まで拡張するのは不自然。 (5) 0^0=0は、関数0^yについて、y=0で連続性が破綻しないから不適当。 (6) lim[x→0,y→0]x^yは不定であるが、0^0=1と矛盾しない。 (7) x^y形式の連続な式で、x=0、y=0の時、その値が1以外に定まる式は存在しない。 (8) 1である根拠は、0^0=0^(-0)=1/0^0。 たぶん、このどれかが成立しなければ、最初の定義は怪しくなります。 #(7)は、表現に不備がある可能性があります。

  • 2変数関数の極限値の解き方(色々なケース)

    以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが 計算結果が正しいか自信がありません。 わかる方、ご指導よろしくお願いいたします。 【問題】 次の極限値は存在するか。存在する時には、その極値を求めよ。 (1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)は極限値は0をとる。 (2) lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x^2+2y^2)/√(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x^2+2y^2)/√(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)は極限値は0をとる。 (3) lim [(x,y)→(0,0)] (xy)/(x^2+2y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (xy)/(x^2+2y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (xy)/(x^2+2y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)は極限値は0をとる。 (4) lim [(x,y)→(0,0)] (x-y^2)/(x^2-y) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x-y^2)/(x^2-y) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x-y^2)/(x^2-y) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)は極限値は0をとる。 (5) lim [(x,y)→(0,0)] (y^2)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (y^2)/(x^2+y^2) = 1 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (y^2)/(x^2+y^2) = 0 上記より、異なる近づけ方をすると極限値が1つに定まらない。 よって、lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)は極限値を持たない。 (6) lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x^2-y^2)/(x^2+y^2) = -1 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x^2-y^2)/(x^2+y^2) = 1 上記より、異なる近づけ方をすると極限値が1つに定まらない。 よって、lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)は極限値を持たない。 (7) lim [(x,y)→(0,0)] (xy)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (xy)/(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (xy)/(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (xy)/(x^2+y^2)は極限値は0をとる。 (8) lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2) まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x^2y)/(x^2+y^2) = 0 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x^2y)/(x^2+y^2) = 0 上記より、異なる近づけ方でも極限値が1つに定まる。 よって、lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)は極限値は0をとる。 もし、導き方がおかしいようなら、ご指摘いただければと思います。 以上、ご指導のほどよろしくお願いします。

  • 数学IIIの問題

    極限の問題です。助けてください 解説もお願いします 次の数列の極限値を教えてください。 (1)lim x→4 (x^2-16)/(x^2-4x) (2)lim θ→0 (sinθ)/θ 次の数列の極限を教えてください。 (1)lim x→2 1/(x-2)^2 (2)lim x→0 sinx 次の2次曲線を教えてください。 定点F (0,2)と定直線 l : y=-2があるとき、Fからの距離と l からの距離と等しい点Pの軌跡

  • 多変数関数の微分の問題で困っています。

    多変数関数の微分の問題で困っています。 問: f(x,y)=e^{(x+y)cos(x-y)}のとき、 (x,y)→(0,0) のとき、 {f(x,y)-p(x,y)}/(x^2+y^2) → 0 を満たす二次多項式p(x,y)を求めよ。 補足: 多変数関数の極限の基本定理: lim_{P→P'} f(P)=α,lim_{P→P'} g(P) =βとするとき、 f(P) < h(P) < g(P) かつ α=β ⇒ lim_{P→P'} h(P)=α を使うのかなと方針を立てたのですが、 f(P)とg(P)を上手く選ぶことができません。。 どなたか知恵を貸してください!

  • 大学の数学(極限)

    次の極限値は存在するか。存在するならば、その値を求めよ。 (1) lim (x,y)→(0,0)( sin(πx)sin(πy))/(sin^2(πx)+sin~2(πy)) 御教授宜しくお願いします。

  • 2変数関数での極値の求め方

    以下の2変数関数の極値を求めてみたのですが、自信がありません。 わかる方、ご指導よろしくお願いします。 【問題】 次の極限値は存在するか。存在する時には、その極値を求めよ。 lim [(x,y)→(0,0)] (x-y)/(x+y) 【自分の解答】 まず、x→yの順に近づける。 lim[y→0]lim[x→0] (x-y)/(x+y) = -1 次に、y→xの順に近づける。 lim[x→0]lim[y→0] (x-y)/(x+y) = 1 上記より、近づけ方により極限値が1つに定まらない。 よって、lim [(x,y)→(0,0)] (x-y)/(x+y)には極限値はない。 これで合っているか、ご指導よろしくお願いします。

  • 0の0乗は0、にしたくない

    再び帰ってきました。 迷惑と感じる人は、スルーしてください。 Wikipediaでの議論について、気になったことを質問します。 参考:0の0乗のノート 質問は、以下のことです。 総乗:Π[n=1,y]x_n これの帰納的な定義が、x_n=xならば、x^yの定義と同じに思えます。  p_1 = x_1  p_n+1 = p_n * x_n+1 (+1は添字) そして、ΠΦ=1と記述されています。p_0に相当します。  p_0 = 1 つまり、x_n=0,y=0とすれば、総乗で0^0に相当する値は1です。 ほぼ同じ定義に対して、一方では未定義とし、もう一方では1であるとしています。 この違いは、どこからくるのでしょうか? 理由の一つは、x^yに連続性がないためであることは分かるのですが、定義が同じなら、結果にも同じことを期待するのではないですか? なお、0^0=0を否定するネタとして考えているので、0^0=1を主張する意図はありません。 0^0は未定義か1であり、状況や利便性で使い分ければ良いと考えています。

  • 繰り返しの続き、黄金比

    http://oshiete1.goo.ne.jp/qa3562030.html の問題の続きです。 隣り合うフィボナッチ数の比を1/1、2/1、3/2,5/3,8/5,13/8・・・ と順に求めていくと極限値は黄金比となる。前問のプログラムを 改良して、40項までの比を順番に表示するプログラムを作りなさい。 この比が黄金比に漸近的に近づくことを確認して、黄金比の値を もとめなさい。 これってどこら辺を改良すればできるのでしょうか。

  • 二変数関数の極限値なのですが

    いつもお世話になっています。学生です。 微分積分学を読んでいるのですが、不明な所に来てしまい、 質問させていただきました。 まず、 lim[x,y→0,0]xy^2/(x^2+y^2) を求めよということなのですが、 簡単なやり方として極座標変換して lim[r→+0]r^3*Cosθ(Sinθ)^2/r^2≦lim[r→+0]r=0 とすると思います。あるいは |xy^2/(x^2+y^2)|≦|x|→0 ですよね。これはいいのですが、この問題の注のところに y=mxとして[x,y→0]のときx→0となることを利用して lim[x,y→0,0]xy^2/(x^2+y^2) =lim[x→0]m^2x^3/(1+m^2)x^2 =0 とするのは誤りとありました。特定の直線族に沿う近づき方 をしているからいけないということで納得はいきました。 しかし次の問題の別解は叙上のようにy=mxとするやり方でした。 lim[x,y→0,0](y^3+y^2)/(x^2+y^2) ところでこれも同様に極座標変換でいくと、最終的に lim[r→+0](Sinθ)^2+r(Sinθ)^3=(Sinθ)^2 となって、θの値によってバラバラだから極限値なしが正解です。 別解は、y=mxとおいて lim[x→0](m^2+m^3*x)x^2/(1+m^2)x^2 =lim[x→0](m^2+m^3*x)/(1+m^2) =m^2/(1+m^2) =0,1/2 (∵m=0とm=1) よって極限なし。 先の問題でこのような解法は駄目となっていたのに対し 後の問題ではなぜいいのか分かりません。 それから一番最後で 「0,1/2 (∵m=0とm=1)」とわざわざ特定の値を書いているのは なぜでしょうか。たまたま具体例を示しただけでしょうか。 以上二つ疑問があります。 分かる方ご教授願います。よろしくお願い致します。