• 締切済み

正n角形の対角線の交点の数I(n)についての予想

正n角形の交点の数I(n)を調べてみると(実際書きましたw) 二つの予想がでました。 予想その1 nが奇数のときかつ4以上のとき I(n)をn=4から順にもとめていくと I(n)=奇数、奇数、偶数、偶数、奇数、奇数・・・ となることに気がつきました。 ちなみにこのときのI(n)=nC4と考えています。 予想その2   nが偶数のとき I(n)=奇数となることに気がつきました。 ちなみにこのときのI(n)の式はまだ分かっていません。 どなたかこの二つの予想を証明or反例をあげてください。 一応参考として、 正n角形の交点の数 I(n)=1(n=4)               5(n=5)               13(n=6)               35(n=7)               49(n=8)               126(n=9)               161(n=10)               330(n=11)               301(n=12) n=7、9、11のときはうまくかけなかったので 正確でないかもしれませんorz (がんばってできるだけ正確に書いたつもりですが)

みんなの回答

  • jo-zen
  • ベストアンサー率42% (848/1995)
回答No.2

ANo.1のjo-zenです。補足です。 以下のURLも参考にしてみてください。   http://www.osaka-kyoiku.ac.jp/~tomodak/report/diagonal18.pdf

kanikama11
質問者

お礼

ありがとうございます。 中心を通る線上以外にも3本交わっている点があるだろうな ということは予想していましたが、 中心を通る線上で4本、5本の線が交わるのは以外でした。 中心を通らない線上の交点で4本以上交わる点はあるのでしょうか?

  • jo-zen
  • ベストアンサー率42% (848/1995)
回答No.1

以下のURLを参考にしてみてください。   http://www.geocities.jp/tomodak_grapes/volume24.html

kanikama11
質問者

お礼

とても参考になりました! nが素数のとき I(n)=nC4であることがはっきりしたので助かりました。 予想その1は nC4でn=4から順にもとめていくと 奇・奇・偶・偶・・・となることを証明すればいいみたいですね。 素数

関連するQ&A

  • 正奇数角形の異なる任意の3本の対角線の交点について.

    正奇数角形の異なる任意の3本の対角線の交点について. 「正奇数角形の異なる任意の3本の対角線は多角形の頂点以外の1点で交わることがない.」 という命題は真だと思いますが,うまく証明できません. 正素数角形の場合は証明できたのですが,奇数の場合はできません. どなたか教授願います. おそらく難問だと思うので気長に待ちます.

  • (超難問)正n角形の対角線の交点の個数は?

    正n角形の対角線はn(n-3)/2本ありますが、これらの交点は何個あるのか、気になります。 ここで難しいのは、異なる3本の対角線が一点で交わることがありうるからです。 さらに、異なる4本の対角線が一点で交わることもあったりして複雑なかんじがします。 いろいろネット上で検索してみて、角度の問題の難問として有名なラングレー問題と関係あるのは分かります。 ラングレイ問題で出題される角度がすべて2π/2mの倍数のとき、正m角形の異なる3つの対角線が一点で交わる場合がある。 http://ir.nul.nagoya-u.ac.jp/dspace/handle/2237/5211を参考 そのサイトの133ページによると、正n角形の異なる3本の対角線が一点で交わる条件が単位円上の複素数を用いて書かれ、手計算では円分多項式を利用できるとあります。 しかし、そのすべての場合を求めるのは、コンピュータを頼っているようです。 それなのに、 http://arxiv.org/PS_cache/math/pdf/9508/9508209v3.pdf の3ページのtheorem1によると「正n角形の対角線の交点の個数I(n)」の公式があるようです。 どうしてそのような公式になるのか教えていただけないでしょうか? サイトが複雑なのでもっとやさしい参考サイトでもいいので教えてください。 たとえば、n=30の場合でもいいです。

  • 数学Iの集合と論証について教えてください

    集合と論証が全く分からないので、教えてください。 (問題)nが自然数のとき、次の命題が真であることを証明しなさい。 (命題)(n+1)^2は偶数⇒nは奇数 (証明) 与えられた命題の対偶 nは偶数⇒(n+1)^2は奇数 が真であることを証明する。 nを正の偶数とすると、mを自然数として n=2m+2 と表すことができる。このとき、 n+1=?? ??が分かりません。普通に2m+2+1で良いんですか? あと上の証明は合ってますか?

  • 数学Aの条件のことについて…詳しく教えて下さい…

    mは奇数またはnは奇数→積mnは奇数 という問題がありました。 わからなかったので答えをみたところ、これは偽で反例が(m=1,n=2)でした。どうしてnは奇数と書いてあるのに反例で偶数がでてくるのでしょうか? ちなみに受験生です。

  • 背理法について

    次の命題を考えます n^2が偶数⇒nは偶数 「これを証明するために背理法を用いてこの命題の否定であるn^2が偶数∧nは奇数が真であると仮定して、 矛盾を導く。 今、nは奇数なのであるkが存在して2k+1と表せる。(2k+1)^2=2(2k^2+2k)+1より、n^2は奇数。 よってn^2が偶数∧nは奇数のn^2が偶数という条件と矛盾。 よって命題はただしい。(方針はこれでお願いします)」 ここで、n=2のとき、上同様に証明してみるとおかしなことに命題の否定が真になってしまいます。 2^2が偶数⇒2は偶数を証明するためにこの命題の否定である2^2が偶数∧2は奇数が真であると仮定して、2が奇数なので2^2=4より偶数よって2^2が偶数∧2は奇数はしんになり、2^2が偶数⇒2は偶数は偽になる(?) これはどこがいけないのでしょうか。 一般のnが証明できたからn=2の時も成り立つのではないのでしょうか。 よろしくお願いします。

  • コラッツ予想が証明できた

    コラッツ予想が証明できたという人のサイトを見ました。 http://www.idel.co.jp/index.html ちなみに、コラッツ予想とは、 「任意の0でない自然数 n をとり、 n が偶数の場合、n を 2 で割る n が奇数の場合、n に 3 をかけて 1 を足す という操作を繰り返すと、有限回で 1 に到達する」 早速そのうさんくさそうな証明に間違いを見つけようと思いましたが、 僕の力ではよくわかりませんでした。 そのサイトの証明はあっているのですか?

  • コラッツの予想ははずれた。

    ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。 最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。  では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。 この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。 ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。 従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。 有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。 少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

  • コラッツの予想ははずれました。-

    ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。 最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。  では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。 この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。 ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。 従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。 有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。 少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

  • 証明

    m,nが奇数のとき、(m^2)-(n^2) は8で割り切れることを証明するには m=2α+1 n=2β+1 (α、βは整数とおくと) (m^2)-(n^2)=(m+n)(m-n) m+n=2(α+β+1) m-n=2(α-β) (m^2)-(n^2)=4(α+β+1)(α-β) までは考えたのですが そのあと、 (1)αが奇数,βが奇数⇒α+β+1が奇数,α-βが偶数   (2)αが奇数,βが偶数⇒α+β+1が偶数,α-βが奇数   (3)αが偶数,βが奇数⇒α+β+1が偶数,α-βが奇数   (4)αが偶数,βが偶数⇒α+β+1が奇数,α-βが偶数 となり,(α+β+1)(α-β)は偶数です. よって、8の倍数といえる これでも合ってますか? 以前、回答がこなかったのでもういちどおねがいします

  • (-1)^nでnを無限大にとばしたとき

    大学受験用の参考書にて、 (-1)^n はn→∞において、 nが偶数のとき1 nが奇数のとき-1 となっています。 さらに、 2n乗では1 2n±1乗では-1 となっています。 そこで質問なのですが、以前に無限大というのは数ではなく量だと聞きました。それなのになぜ偶数や奇数があるのでしょうか。また2nや2n±1でわかれるということは、無限大というのは自然数なのですか?