コラッツの予想ははずれた

このQ&Aのポイント
  • コラッツの予想ははずれた。ある数が奇数なら、3を掛けて1を足す。
  • 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。
  • コラッツの予想は残念ながら誤っています。
回答を見る
  • ベストアンサー

コラッツの予想ははずれた。

ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。 最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。  では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。 この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。 ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。 従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。 有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。 少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

質問者が選んだベストアンサー

  • ベストアンサー
  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

無限という言葉を簡単に考えていませんか? ∞というのは数値ではなく、極限(lim)や積分で使われる記号です。 「そのnを∞にした数値から始めれば」を∞を使わないで説明できませんか?

その他の回答 (1)

  • k_kota
  • ベストアンサー率19% (434/2186)
回答No.2

何が言いたいのか分かりませんが、無限は状態であって数値ではありません。 仮に無限と扱える値があったとしても、無限回の割り算を繰り返せば有限の値になるでしょう。 そのようにならないものはもはや数字ではありませんので、数学の議論ではありません。

関連するQ&A

  • コラッツの予想ははずれました。-

    ある数が奇数なら、3を掛けて1を足す。ある数が偶数なら2で割る。計算結果が奇数なら、また3を掛けて1を足す。偶数なら、また2で割る。その計算を続けて行くと、ありとあらゆる数から始めても、最後は全て4→2→1→4→2→1の繰り返しになるのではないかと、コラッツは予想しました。 計算値が次第に小さくなって行くと、必ず最終的には4→2→1の繰り返しになってしまいます。従って、計算値が、無限に大きくなって行く様な始まりの数があれば、必ずしも4→2→1の繰り返しにはならないことが証明されます。 最初の数が奇数(X)の場合、3を掛けて1を足すと、X(奇数)×3(必ず奇数)+1=Y(必ず偶数)となります。従って、Yは偶数なので、次の計算は必ず割る2となります。よって、幾ら計算値をどんどん大きくしていこうとしても、X(奇数)×3+1=Y(偶数)→Y(偶数)÷2=Z(奇数)、Z(奇数)×3+1=O(偶数)、O(偶数)÷2=P(奇数)と、奇数→偶数の繰り返し以上には、計算値は大きくなっては行かないことが分かります。つまり、(ある奇数×3+1)÷2の計算結果が、必ず奇数であれば、計算値は無限に大きくなって行き、必ずしも最後は4→2→1の繰り返しとはならないことが証明されます。  では、その様な始まりの奇数Xがあるか否か、エクセルを使って検証してみましょう。列Aに上の行から順番に、1・3・5・7・9・11・・・・と奇数を入力してください。列Bに上から順に「=(A1×3+1)/2」「=(A2×3+1)/2」「=(A3×3+1)/2」・・・・と、左のA列の奇数を3倍して1を足し2で割る数式を入力します。列Cに上から順に「=(B1×3+1)/2」「=(B2×3+1)/2」「=(B3×3+1)/2」・・・・B列のセルの計算値を、更に3倍して1を足し2で割る数式を入力します。同様の式をD列・E列・F列・・・に入力して行き、どんどん3倍して1を足し2で割る計算を行います。 この結果、全ての列の計算値が奇数となるものがあれば、計算値は無限に大きくなって行きます。そこで、各列において奇数が出現する様子を見てみましょう。B列では、上から2回に1度5・11・17・23・29・35・・と奇数が現れます。C列では、4回に1度17・35・53・71・89・107・125・・・と奇数が現れます。D列では8回に1度53・107・161・215・269・323・・・と奇数が現れます。E列では、16回に1度161・323・485・647・809・・・と奇数が現れます。F列では、32回に1度485・971・1457・1943・2429・2915・・・と奇数が現れます。G列では、64回に1度1457・2915・4373・5831・7289・・・・と奇数が現れます。以後同様に、H列では128回に1度、I列では256回に1度、J列では512回に1度奇数が現れます。 ここまでの計算で、奇数が連続するのは、512行目の1,023・1,535・2,303・3,455・5,183・7,775・11,663・17,495・26,243・39,365の1つです。3倍して1を足し2で割る計算をn回行えば、全ての計算値が奇数になるものは、2のn乗分の1に減少していきます。この事実は、簡単に証明出来るでしょう。 従って、計算を行えば行う程、計算値が奇数の連続になるものは1/2・1/4・1/8・1/16・1/32・・どんどん半分に減少していきます。しかし、無限の数の中では、2のn乗分の1は決して0にはなりません。3倍して1を足し2で割る計算をn回する場合、1から数えて2のn乗番目の奇数(又はその倍数番目の奇数)から始めると、n回の計算結果全てが奇数となります。計算値は大きくなる一方で、4→2→1の繰り返しにはなりません。 有限の数の範囲内では、計算値がその範囲を超えるまで計算を行っていけば、奇数が連続しなくなります。しかし、無限の数の中では、常に先に2のn乗番目の奇数があります。それは(1+2×2のn乗)で表現される数値で、尽きることはありません。そのnを∞にした数値から始めれば、無限に計算を繰り返しても4→2→1の繰り返しにはなりません。 少なくとも1組は、永遠に奇数が連続し数値が大きくなっていく組み合わせが存在します。従って、コラッツの予想は残念ながら誤っています。

  • コラッツ予想が証明できた

    コラッツ予想が証明できたという人のサイトを見ました。 http://www.idel.co.jp/index.html ちなみに、コラッツ予想とは、 「任意の0でない自然数 n をとり、 n が偶数の場合、n を 2 で割る n が奇数の場合、n に 3 をかけて 1 を足す という操作を繰り返すと、有限回で 1 に到達する」 早速そのうさんくさそうな証明に間違いを見つけようと思いましたが、 僕の力ではよくわかりませんでした。 そのサイトの証明はあっているのですか?

  • (-1)^nでnを無限大にとばしたとき

    大学受験用の参考書にて、 (-1)^n はn→∞において、 nが偶数のとき1 nが奇数のとき-1 となっています。 さらに、 2n乗では1 2n±1乗では-1 となっています。 そこで質問なのですが、以前に無限大というのは数ではなく量だと聞きました。それなのになぜ偶数や奇数があるのでしょうか。また2nや2n±1でわかれるということは、無限大というのは自然数なのですか?

  • サイコロの目の奇数・偶数問題です。

    開始の数を1として、1回目サイコロを振り奇数が出ると2倍して1たす。偶数がでると2倍する。例えばサイコロの目が1回目奇数の時3になり偶数の時2になる。3回、サイコロを振って奇数奇数偶数がでると14になる。そういう試技を8回行い奇数が3回偶数が5回でるとすると最後の数は56通り考えられますが総和はいくらになりますか?ノートに書いてやってみましたが19691ですが、簡単な計算と考え方を教えてください。

  • 質問です。

    質問です。 数学の問題です。 教えてください。 ~式の計算の利用~ (1) (1)連続する3つの整数のそれぞれの2乗の和から5をひいた数は、もっとも大きい数と最も小さい数の積の3倍に等しくなる。このことを証明しなさい。 (2)6²-2²=32,12²-8²=80のように、1つおきに続く2つの偶数では、大きい方の数の2乗から小さい方の数の2乗をひいた差は、16の倍数になる。このことを証明しなさい。 (2)x+y=-6、xy=5のとき、次の問いに答えなさい。 (1)x²+y²=(x+y)-「ア」xyとなる。アにあてはまる数を求めなさい。 (2)(1)から、x²+y²の値を求めなさい。 (3)a=1/6、b=1のとき、(a+b)(a-b)+(3a+b)²-4a²の値を求めなさい。 (4)501×505-499²+496²をくふうして計算しなさい。

  • 証明の答えが解りません

    多項式、因数分解の「式の計算の利用」の問題です。 ★2つの続いた偶数では、大きい偶数の2乗から小さい偶数の2乗をひいた差は、それら2つの数の間の奇数の4倍になることを証明しなさい。 この証明の解き方と答えを教えて下さい。中学3年の数学です。

  • 自然数の面白い性質

     自然数の面白い性質があれば教えて欲しいのですが。 「連続偶数の積に1を加えたものは、その偶数にはさまれる奇数の2乗に等しい」と言うようなものが物の本には書いてありましたが、もっと他に例がないかなと思ってお尋ねします。

  • 整数の性質について

    ↓の証明がどうしても分かりません。 (1)ある自然数の平方とその数の和は偶数であることを連続する2つの自然数の積は偶数になることを利用して証明しなさい。 (2)3つの連続する整数では中央の数の2乗より1小さい数は両端の数の積と等しいことを証明しなさい。 (1)はある自然数をnとするとnの二乗+n=偶数になればいいんですよね?? (2)は整数をnとすると連続する3つの整数は(n-1)、n、(n+1)。 nの二乗-1=(n-1)(n+1)でいいんですか?? (1)も(2)も続きが分かりません。 どなたか教えてください!!お願いします。

  • カタランの予想が証明出来ました。

    aとbを自然数、xとyを2以上の自然数とする時、a[のy乗]-b[のx乗]=1の解は、a=3、b=2、y=2、x=3に限る、即ち3[の2乗]-2[の3乗]=1しかないとするのが、カタランの予想です。(便宜上aのx乗をa[のx乗]と表します) a[のy乗]-b[のx乗]=1を、(1)a[のy乗]-1=b[のx乗]と変形します。a[のy乗]とb[のx乗]を因数分解すると、双方素数の掛算になります。a[のy乗]とb[のx乗]の差が1なので、片方は偶数で他方は奇数です。素数の内、偶数は2のみです。因数分解した素数の掛算の中に、2が1つでもあると全体は偶数となります。従って、片方のみ2を必ず含みます。他方は2以外の素数(奇数)の掛算となります。  ではまず、a及びbが素数の場合を検証します。 b=2の場合(1)式は a[のy乗]-1=(a[のy/2乗]+1)×(a[のy/2乗]-1)=2[のx乗]となります。 2つの数字を掛けて2の累乗になるのは、双方が2の累乗の時だけです。従って、 (a[のy/2乗]+1)=2[のm乗]、(a[のy/2乗]-1)=2[のn乗]、m+n=xです。 ある数に1を足しても、それから1を引いても2の累乗になります。2の累乗の中で差が2なのは、2と4のみです。従って、 (a[のy/2乗]+1)=2[のm乗]=4、m=2、a[のy/2乗]=4-1=3=3[の1乗]、a=3、y/2=1、y=2です。 (a[のy/2乗]-1)=2[のn乗]=2、n=1、a[のy/2乗]=2+1=3=3[の1乗]、a=3、y/2=1、y=2です。 m=2、n=1なのでx=3です。この場合、解は3[の2乗] -1=2[の3乗]しかありません。 次にa=2の場合(1)式は (2)2[のy乗]-1=(2[のy/2乗]+1)×(2[のy/2乗]-1)=b[のx乗] となります。 2つの数字を掛けてbの累乗になるのは、双方がbの累乗の時だけです。ある数に1を足しても、それから1を引いてもbの累乗となります。2以外の素数の累乗の中で差が2なのは、3[の1乗]=3と3[の0乗]=1のみです。従ってb=3です。 (2[のy/2乗]+1)=3、2[のy/2乗]=3-1=2=2[の1乗]、y/2=1、y=2です。 (2[のy/2乗]-1)=1、2[のy/2乗]=1+1=2=2[の1乗]、y/2=1、y=2です。(2)は、2[の2乗]-1=4-1=3[の1乗]となり、x=1となります。(2)は、2[の2乗]-1=3[の1乗]ですが、x<>1であるので、この場合解はありません。 次に、a及びbが複数の素数の掛算からなる場合です。a[のy乗]とb[のx乗]は、偶数と奇数なので、a又はbどちらか一方にのみ2を含みます。 まず、bが2を含む場合(1)式は a[のy乗]-1=(a[のy/2乗]+1)×(a[のy/2乗]-1)=(2×c)[のx乗] となります。 2つの数字を掛けて(2×c)の累乗になるのは、双方が(2×c)の累乗の時だけです。(2×c)の累乗の中で差が2なのは、c=1の時で、4と2のみです。従って、 (a[のy/2乗]+1)=4、a[のy/2乗]=4-1=3=3[の1乗]、a=3、y/2=2、y=2です。 (a[のy/2乗]-1)=2、a[のy/2乗]=2+1=3=3[の1乗]、a=3、y/2=2、y=2です。 この場合も、解は3[の2乗] -1=9-1=8=2[の3乗]となります。  次に、aが2を含む場合(1)式は (3)(2×d)[のy乗]-1=((2×d)[のy/2乗]+1)×((2×d)[のy/2乗]-1)=b[のx乗] 2つの数字を掛けてbの累乗になるのは、双方がbの累乗の時だけです。ある数に1を足しても、それから1を引いてもbの累乗となります。2を含まない素数の掛算の累乗の中で差が2なのは、3[の1乗]=3と3[の0乗]=1のみです。従ってb=3です。 ((2×d)[のy/2乗]+1)=3、(2×d)[のy/2乗]=3-1=2=2[の1乗]、d=1、y/2=1、y=2です。 ((2×d)[のy/2乗]-1)=1、(2×d)[のy/2乗]=1+1=2=2[の1乗]、y/2=1、y=2です。(3)は、2[の2乗]-1=4-1=3[の1乗]となり、x=1となります。(2)は、2[の2乗]-1=3[の1乗]ですが、x<>1であるので、この場合解はありません。 従って、a[のy乗]-b[のx乗]=1の解は、a=3、b=2、y=2、x=3、即ち3[の2乗]-2[の3乗]=1に限る。

  • エルデスシュトラウスの予想が、証明出来ました。

    Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 4/Nの塊を、1/Xと1/Yと1/Zとの3つに分ける事自体は簡単です。X・Y・Zが無理数でも良いのなら、適当に3分割すればよろしい。Nが如何なる2以上の自然数となっても、X・Y・Zには、小数点以下の端数が付いてはならない点が、この予想の証明の難しいところです。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、2/N=1/N+(1/N+1)+(1/N(N+1))(2/N公式と呼ぶ)は常に成立します。Nにさまざまな自然数を入れて見てください。この数式を基礎として、4/N=1/N+(1/N+1)+(1/N(N+1))が成立することを証明出来るでしょうか。 Nが偶数の時、2/N公式にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。2/11=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となります。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/10)+(1/90)=40/90=4/9となります。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います(分子のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき(1/11)+(1/4)+(1/44)=16/44=4/11となります。 次ぎに、N=3n+2でNが奇数の時です。2/N公式では、(2)+(3)は1/Nです。分母にどの様な自然数を掛けても、分子は1なので、要件を満たします。つまり、(2)+(3)は、1/2N・1/3N・1/4N・1/5N・1/6N・1/7N・・・と自由に選択出来ます。Nに1を足して4の倍数になる場合、(N+1=4nの時)(1)式中のNの替りに倍数nを使います。(2)+(3)式の分母には、自由に自然数を掛けられるので、倍数nを掛けます。(2)+(3)=1/Nn=(1/2Nn)+(1/2Nn)とします。例えばN=19の時、19+1=20=5×4なので倍数5を使います。(1/5)+(1/190)+(1/190)=40/190=4/19となります。 残ったのは、N=3n+2且つ、N=4n-3且つ、Nが奇数の時です。即ちN=12n+1の数列で、具体的には、13・25・37・49・61・85・97・109・・・です。 これらの数値(Rとする)は、2乗で表せます。13=2×2+3×3、25=3×3+4×4、37=6×6+1×1、49=7×7、61=5×5+6×6、85=9×9+2×2、97=9×9+4×4、109=10×10+3×3・・・等です。4/(Rの2乗)=(2/R)の2乗なので、この場合も2/N公式により、予想は成立します。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。