内積空間Vと正規直交集合Xの関係について

このQ&Aのポイント
  • (i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi)
  • (ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完全
  • X={x1,x2,…,xn}を内積空間Vの正規直交集合とする。この時、(i)と(ii)の関係について証明を行いたい。
回答を見る
  • ベストアンサー

(i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi),(ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完

お世話になっています。 [Q]X={x1,x2,…,xn}を内積空間Vの正規直交集合とせよ。この時,次の(i),(ii)を示せ。 (i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi) (ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完全 完全の定義は「正規直交集合Xが完全とはVの中での最大個数の正規直交集合の時,Xを 完全と言う」です。 つまり,#X=max{#S∈N;(V⊃)Sが正規直交集合}を意味します。 証明で行き詰まっています。 (i)については x∈Vを採ると,spanX=Vよりx=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。 これからΣ[i=1..n](<x,xi>xi)にどうやって持ってけばいいのでしょうか? あと,(ii)についてはさっぱりわかりません。 何か助け舟をお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

>x=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。 <xi,x>を計算すれば終わり >(ii)についてはさっぱりわかりません 「任意の」x∈Vに対して ∥x∥^2=Σ[i=1..n]|<x,xi>|^2 ならばXは完全 x1,...,xnとは異なるyをとり, x1,...,xn,yが正規直交であると仮定する. ||y||^2 = Σ[i=1..n]|<y,xi>|^2を計算すれば 矛盾がでてくる.

BBeckyy
質問者

お礼

有難うございます。 >x=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。 > <xi,x>を計算すれば終わり Σ[i=1..n]cixi:=x,Σ(<x,xi>xi)=Σ[i=1..n](c1<x1,xi>+c2<x2,xi>+…+cn<xn,xi>) =Σ[i=1..n]cixi=x となりますね。 > >(ii)についてはさっぱりわかりません > 「任意の」x∈Vに対して > ∥x∥^2=Σ[i=1..n]|<x,xi>|^2 > ならばXは完全 > x1,...,xnとは異なるyをとり, > x1,...,xn,yが正規直交であると仮定する. > ||y||^2 = Σ[i=1..n]|<y,xi>|^2を計算すれば > 矛盾がでてくる. 仰ると通り証明できました。

関連するQ&A

  • x1,x2,…,xn:正規直交Σ[i=1..n]|<x,xi>|^2≦∥x∥^2且つx-Σ[i=1..n]<x,xi>xi⊥xj (∀j)

    こんにちは。 [定理]x1,x2,…,xnが内積空間Xでの正規直交集合とする。 x∈Xの時, Σ[i=1..n]|<x,xi>|^2≦∥x∥^2 且つ x-Σ[i=1..n]<x,xi>xi⊥xj (∀j) はどのようして示せばいいのか分かりません。 何卒,ご教示ください。 尚, 内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条 件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言 う。 (i) <x,x>≧0; <x,x>=0⇔x=0 (ii) <x,y>=<y,x>~ (~はバーを表す) (iii) <x+y,z>=<x,z>+<y,z> (iv) <αx,y>=α<x,y> ノルムの定義はVを線形空間とする。Vの任意の要素xに対して,次の条件を満たすような実数∥x∥がある時,∥x∥をxのノルムという。 (i) ∥x∥≧0;また∥x∥=0⇔x=0 (ii) ∥αx∥=|α|∥x∥ (iii) ∥x+y∥≦∥x∥+∥y∥

  • ピタゴラスの定理

    定理(ピタゴラスの定理) {Xn}[Σn=1~N] を内積空間Vの中の正規直交系であるとする。すべての X∈V について   ||X||^2 = Σ[n=1~N]|(X,Xn)|^2 + ||X-Σ[n=1~N](Xn,X)Xn||^2 が成り立つ。 ________________________________ この証明で、内積の性質から   Σ[n=1~N](Xn,X)Xn と X-Σ[n=1~N](Xn,X)Xn は直交である と、参考書に書かれていたのを使って証明したのですが・・・ 肝心の直交であることの証明が上手くいきませんでした。   ( Σ[n=1~N](Xn,X)Xn , X-Σ[n=1~N](Xn,X)Xn )     = Σ[n=1~N]|(Xn,X)|^2 - ||Σ[n=1~N](Xn,X)Xn||^2     = 0 ↑となるハズなのですが・・・、2つの等式が上手く説明できませんでした。 簡単な問題かもしれませんが、力を貸してくれたら幸いです。 また、この定理が何故「ピタゴラスの定理」というのかが分かりません。 協力お願いします。

  • Xi(i∈I)が凸集合⇒∩[i∈I]Xiも凸集合

    Rを実数体とする。 R^n⊃Xi(i∈I)が凸集合⇒∩[i∈I]Xiも凸集合 を示したいのですが ∀λ∈[0,1], x,y∈∩[i∈I]Xi, λx+(1-λ)y=… からどのようにして ∈∩[i∈I]Xiに辿り着けますでしょうか?

  • X1,X2,・・・・XnはP(Xi=1)p、P(Xi=0)=1-p

    X1,X2,・・・・XnはP(Xi=1)p、P(Xi=0)=1-p i=1、....、n(0<p<1) をもつ母集団からの無作為標本とするとき、 母数pの最尤推定量を求めよという問題がわかりません。 分かる方がいらっしゃいましたら回答お願いします。

  • y1,y2,…ym:一次独立でV=span{x1,x2,…,xn}ならm≦n

    [問]体F上の線形空間V∋y1,y2,…ym:一次独立. V=span{x1,x2,…,xn} (x1,x2,…,xn∈V) とする時(つまり、x1,x2,…,xnはVのspan set)、 m≦nとなる事を示せ。 [証] dimV=Lと置くと、L≧mで (i) L=mの時 V=span{y1,y2,…,ym} 且つ y1,y2,…ym:一次独立 が成立せねばならない(∵dimの定義「線形空間を張る一次独立なベクトルの最大個数」)。 ここでm>nと否定して矛盾を引き出してみる。 その場合,先ず、x1,x2,…xn:一次従属でなければならない(∵dimの定義)。 そこから先に進めません。どう書けばいいのでしょうか?

  • {x1,x2,…,xn}は正規直交系でxがspan{x1,x2,…,xn}に無いならxは直交する?

    [Q] Given a orthonormal set,O:{x1,x2,…,xn},and x is not in spanO,show that x is orthonormal to every vector in O. という定理についてです。 仮定は<xi,xj>=δij (i,j∈{1,2,…,n}) xがspanOの中に無いというのだからx,x1,x2,…,xnは一次独立ですよね。 一次独立だからといってxがOのどの元とも直交するとは言えませんよね。 背理法で∃i∈{1,2,…,n};<x,xi>≠0だと仮定してみると ∥x∥∥xi∥cos∠(x,xi)≠0と書け、、、 からどうやってxがOのどの元とも直交である事を示せばいいのでしょうか?

  • Vをn次元内積空間とする。線形写像f:V→Vがpositive且つ<f(x),x>≧0(∀x∈V)ならtr(f)≧0

    内積空間についての命題の証明についてです。 [命題]Vをn次元内積空間とする。 線形写像f:V→Vがpositive且つ<f(x),x>≧0(∀x∈V)ならtr(f)≧0 を示しています。 fがpositiveであるの定義は<f(x),y>=<x,f(y)> (for∀x,y∈V) tr(f)の定義はfの表現行列Aのトレース Vの基底を{v_1,v_2,…v_n}とすると x=Σ[i=1..n]c_iv_i y=Σ[i=1..n]d_iv_i (c_i,d_i∈C:複素数体 (i=1,2,…,n)) f(v_j)=Σ[i=1..n]a_ijv_i と書け,((a_ij)=:Aをfの表現行列という) <f(x),y>=<f(Σ[i=1..n]c_iv_i),Σ[i=1..n]d_iv_i> =<Σ[i=1..n]c_if(v_i),Σ[i=1..n]d_iv_i>(∵fは線形写像) <x,f(y)>=<Σ[i=1..n]c_iv_i,f(Σ[i=1..n]d_iv_i)> =<Σ[i=1..n]c_iv_i,Σ[i=1..n]d_if(v_i)>(∵fは線形写像) で仮定より <Σ[i=1..n]c_if(v_i),Σ[i=1..n]d_iv_i> = <Σ[i=1..n]c_iv_i,Σ[i=1..n]d_if(v_i)> と書ける。。。 からどのようにして証明してけばいいのでしょうか?

  • Σ{i=1~n} k_i/f'(x_i) =Σ{

    f(x)を[0,1]で微分可能として、f(0)=0,f(1)=1とする。 任意のk_1,k_2,k_3,k_4,...,k_n に対し次の条件を満たすx_1,x_2,x_3,...,x_n  (すべて異なる)が存在することをしめせ  Σ{i=1~n} k_i/f'(x_i) =Σ{i=1~n} k_i という問題なんですが、 Σ{i=1~n} k_i/f'(x_i)がうまくxiを選べば、f'(x)が0にならない範囲で、 Σ{i=1~n} k_i/f'(x_i) ≧Σ{i=1~n} k_i Σ{i=1~n} k_i/f'(x_i) ≦Σ{i=1~n} k_i となるようにできれば中間値の定理より等号が成立するというったことができるかなとおもったのですが、いまいちわかりません。 簡単なヒントでいいのでよろしくお願いします。

  • 加重平均 

    n個の確率変数X1,X2,...,Xn がN(μ,1)に従うとき X' = (1/n)Σ<1 n>Xi は nが十分大きいときに 正規分布 N(μ,1/n)に従うとみなしていいです(中心極限定理) それでは X' = Σ<1 n> w(i) * Xi ただし Σw(i)=1 (w(i)は数列{w(n)}の第n項) としたとき X'は正規分布に従いますか?? X'の平均はμ,分散Σ(w(i))^2 は分かったので N(μ,Σ(w(i))^2) かと思うのですが、確証がないので アドバイスをいただけないでしょうか。

  • n次元Euclid空間Rnについての問題です。

    T(n-1)={(x1,x2,...,xn)∈Rn | Σn(i=1)xi^2=1} はn次元Euclid空間Rnにおいて、Rnの閉集合である と言えますか? 証明もよろしくお願いします。