• 締切済み

n次元Euclid空間Rnについての問題です。

T(n-1)={(x1,x2,...,xn)∈Rn | Σn(i=1)xi^2=1} はn次元Euclid空間Rnにおいて、Rnの閉集合である と言えますか? 証明もよろしくお願いします。

みんなの回答

回答No.1

T(n-1)は n=1 なら 1、-1 n=2 なら原点が中心の半径1の円周 n=3 なら原点が中心の半径1の球面 : : となるんでしょうか 普通の位相が入っているとしてT(n-1)が閉であることを証明するにはT(n-1)の補集合が開集合であることを示します。 (証明) U(n-1)をT(n-1)の補集合とする。x∈U(n-1)と原点の距離をpとすればp≠1。p<1のとき δ=(1-p)/2 とすればxのδ近傍は明らかにU(n-1)に含まれる。 p>1のときも同様。 よってU(n-1)は開集合。 (証明終)

papaparapia
質問者

お礼

回答ありがとうございます。  よくわかりました!

関連するQ&A

  • 位相空間の連結性について

    Rn:n次元Euclid空間 a∈Rnとする。 このとき、Rn-{a}は連結である。 この証明方法を教えて欲しいです。 Rn-{a}が連結であると仮定すると Rn-{a}=A∪B A∩B=Φ A≠φ B≠φを満たすRn-{a}の閉集合A,Bが存在する。 ・・・ で矛盾を導くのかな?と考えるのですが、どのように証明したらいいのか解りません。 よろしくお願いします。

  • n次元空間での直線・平面・立体....の式

    ベクトルについて勉強していて疑問に思ったことがあるので質問します。 n次空間で、点(x1,x2,x3,....xn)=xo↑の位置ベクトルを通り、方向がa↑=(a1,a2,a3....an)の直線の式は、tを媒介変数として、 v↑=a↑t+xo↑で表すことができます。 2次元だったら、 v1=a1•t+x1 v2=a2•t+x2 より、 (v1-x1)/a1=(v2-x2)/a2=t v1をx、v2をy、x1をa、x2をb、a2/a1をm と書き直すと見慣れた直線の式 y-b=m(x-a)になりますね。 3次元では、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=t となります。 これは、 (a,b,c)を通り、ベクトル方向が(l,m,n) である直線の式 (x-a)/l=(y-b)/m=(x-c)/n と同じ形です。 ということは、n次元の直線の式は、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=....(vn-xn)/an=t ですよね。 直線の式は、n次元に拡張できました。 次に平面の式を考えます。 3次元空間内における平面(2次元)とは、ある1つの直線に直交した面です。 その平面上の定点を(x1,x2,x3)=xo↑とします。 任意の位置ベクトルを(v1,v2,v3)=v↑として、ある1つの直線の方向ベクトルを (a1,a2,a3)=a↑とします。 平面上の任意のベクトルとa↑は、直交するので、 内積=0 すなわち、〈v↑-xo↑・a↑〉=0がなりますね。 成分で書くと、 a1(v1-x1)+a2(v2-x2)+a3(v3-x3)=0 ですね。 a↑に独立なベクトルは、3次元空間上に2本取れます。 すなわち、これは「面(2次元)」ですね。 a1をa、a2をb、a3をc、v1をx、v2をy、v3をzに書き直すと、 これは、平面の式 ax+by+cz=d になります。 このように、3次元空間では、2次元の面と1次元の直線が考えることができました。 そこで、これを4次元に拡張してみました。 4次元空間では、直線は、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=(v4-x4)/a4=t ですね。 この直線と直交する線は、3本あります。 〈v↑-xo↑・a↑〉=0 なので、成分で表すと、 a1(v1-x1)+a2(v2-x2)+a3(v3-x3)+a4(v4-x4)=0....(1) ですね。 ここで、質問ですが、(1)の式は、独立した3つのベクトルを含むので、「立体(3次元)」と言ってもいいのでしょうか? もし、その認識が正しかったら、 4次元空間上での立体(3次元)の式は、xyzuを変数として、 一般にax+by+cz+du=e という式で表すことができるという認識は正しいですか? 4次元空間での直線(1次元空間)の式は、先に示したように (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=(v4-x4)/a4 ですね。 3次元空間だったら、2次元空間の面と1次元空間の直線を式で書くことができました。 4次元空間だったら、3次元空間の立体と1次元空間の直線は、式として与えらると考えると、 4次元空間上での「面(2次元)」の式は、存在するのですか? n次元に拡張したら、 a1x1+a2x2+a3x3+.......anxn=kという式は、 は、(n-1)次元空間を表す式であると言っていいのでしょうか? また、その時、 (n-2)次元空間を表す式 (n-3)次元空間を表す式....は考えることができるのでしょうか? 多分、専門書などを解読すれば答えは見つかるかもしれませんが、自分でこのような疑問を思ったので投稿しました。

  • n次元半球面とn次元球体が位相同形であることの証明

    こんにちは。tumftmkといいます。 位相についての質問です。 先日、教科書に次のような記述がありました。 A={(x1,x2,…,xn,xn+1)∈R^(n+1) | xn+1≧0 , (x1)^2+…+(xn)^2+(xn+1)^2=1 }  (n次元上半球面) B={(x1,x2,…,xn)∈R^n | (x1)^2+…+(xn)^2 ≦ 1 } (n次元球体) とする。 このとき、写像 f を f :A→B、(x1,x2,…,xn,xn+1)|→ (x1,x2,…,xn)  (射影) とすると、これは同相写像である。 よってAとBは位相同形である。 このようにありましたので、「fは同相写像」をきちんと証明しようとしました。 fが全単射、fが連続 までは分かりました。 そしてε-δ論法を使ってfの逆写像が連続になることを示そうとしましたが、うまく出来ませんでした。 (直感的には分かるのですが…) fの逆写像を f^(-1) とすると    f^(-1) :B→A 、(x1,x2,…,xn,)|→ (x1,x2,…,xn, [1-{ (x1)^2+…+(xn)^2 }]^(1/2) ) となります。    f^(-1) が連続 ⇔ 各成分が連続  なので、(n+1)成分について考えて、  g :B→R 、(x1,x2,…,xn,)|→ [1-{ (x1)^2+…+(xn)^2 }]^(1/2) の連続性さえ示してしまえば証明が終了する、というところまでは分かりました。 (残りの成分については、射影になっているので連続であることは分かります。) この g についてε-δ論法を使ってみたのですが、どのようにδをとればよいのかが分かりません。 どなたか分かるかたがいましたら解答よろしくお願いします。

  • n次元の体積の求め方

    n次元ユークリッド空間で、   x1≧0, x2≧0,… xn≧0, x1+x2+…+xn ≦ a (aは正定数) を満たす領域の体積を考えます。私はこれを   ∫(0~a)dxn∫(0~a - xn)dxn-1 …∫(0~a -(xn+…+x2))dx1  =∫(0~a)dxn∫(0~a - xn)dxn-1 …∫(0~a -(xn+…+x3))dx2(a -(xn+…+x2))  =…  =a^n/n! として求めました。(http://oshiete1.goo.ne.jp/kotaeru.php3?q=1057646参照) n=2, 3 の場合にこれが正しいことは容易に確かめられます。自分の回答のことで無責任ですが、一般のnの場合になぜこのような積分で体積が求められるのでしょうか。また、被積分関数が1でないなら積分も必要と思いますが、被積分関数が1の場合は単なる体積です。積分を使わずにこの体積を幾何学的に直感的に説明する方法はないのでしょうか。

  • (i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi),(ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完

    お世話になっています。 [Q]X={x1,x2,…,xn}を内積空間Vの正規直交集合とせよ。この時,次の(i),(ii)を示せ。 (i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi) (ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完全 完全の定義は「正規直交集合Xが完全とはVの中での最大個数の正規直交集合の時,Xを 完全と言う」です。 つまり,#X=max{#S∈N;(V⊃)Sが正規直交集合}を意味します。 証明で行き詰まっています。 (i)については x∈Vを採ると,spanX=Vよりx=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。 これからΣ[i=1..n](<x,xi>xi)にどうやって持ってけばいいのでしょうか? あと,(ii)についてはさっぱりわかりません。 何か助け舟をお願い致します。

  • 射影空間の定義について

    射影幾何のついて学び始めたのですが、抽象的なためか定義の理解に苦しんでいます。 「複素ベクトル空間Vの射影化P(V)とは、V\0の同値関係~による商である。」とあり、直後の問題で、「このP(V)とVの1次線形部分空間の集合と自然な1体1対応があること示せ。」とあります。私としては、n次元ベクトル空間Vに対する1次元部分ベクトル空間との1体1対応、かと思っていたのですが、違う本を参照してみると、 「Def.ベクトル空間Vの1次元線型部分空間をP(V)とかき、射影空間と呼ぶ。Vがn+1ならばP(V)はn次元であるという。」と、ありました。 質問は次です。 Q,下の定義において、1次元線形部分空間なのに、なぜn次元の話になるのか。 この時、上の問題の回答は、 (x0,x1,…,xn)→(x1/x0,…,xn/x0) と対応付ければ終わりでしょうか。 よろしくお願いします。

  • 線形代数でn次元ユークリッド空間等を表現するときに、Rn(ここでnは上

    線形代数でn次元ユークリッド空間等を表現するときに、Rn(ここでnは上付き添え字)などと表現すると思いますが、この「Rn」は英語読みだとどのように読むことが多いですか?

  • 商位相空間

    X=R^n+1-(0,0,…,0)のおいて(x0,…,xn)~(λx0,…,λxn)(λ≠0)により 関係~をX上に定義する。 (a)~が同値関係になることを示せ。 (b)商位相空間X/~をRP^nと表し、n次元実射影空間という。 RP^nがハウスドルフ空間であることを示せ。 (a)に関しては問題が曖昧な気がするのですが…。 これは (x0,…,xn)~(y0,…,yn)⇔∃λ≠0 s.t.(y0,…,yn)=(λx0,…,λxn) ということでいいのですか? (b)ですがハウスドルフ空間の定義は X上の任意の異なる二点x,y∈Xに対して二つの開集合U,Vで x∈U、y∈VかつU∩V=φとなるものが存在する。 ということですよね。 商位相空間X/~はどのような位相空間になるのでしょうか?

  • ファンデルモンドの行列式の証明方法

    d/dt|A1(t),A2(t),....,An(t)|=|A1'(t),A2(t),....,An(t)|+ |A1(t),A2'(t),....,An(t)|+..... +|A1(t),A2(t),....,An'(t)| を使って、ファンデルモンドの行列式 |1 x1 x1^2 .... x1^(n-1)| |1 x2 x2^2 .... x2^(n-1)| | . . . . . . . . . . . . . . . . .| | . . . . . . . . . . . . . . . . .| =Π(xj-xi) (1<=i<j<=n) | . . . . . . . . . . . . . . . . .| | 1 xn xn^2 .... xn^(n-1)| を証明するという問題にどなたか回答お願いします。

  • 結合法則

    M:空でない集合 φ:M×M→M φ(φ(x,y),z)=φ(x,φ(y,z)) (∀x,y,z∈M)…☆ が成立しているとする。 X1,…,Xn∈Mが与えられたとき、Xi,X(i+1)に対しφを作用させる。次にn-1個の元X1,…,X(i-1),φ(Xi,X(i+1)),X(i+2),…,Xnを改めてY1,…,Y(n-1)と記し、またYj,Y(j+1)に対しφを作用させる。この操作を繰り返し最後に残った元をZとする。 このとき、X1,…,Xnに対しZを対応させる写像ψn:M^n→Mはφを作用させる場所によらず(つまりiやjなどによらず)well-definedである。 以上のことを証明してみたのですがあっているかどうかわからないので、教えて下さい。 (証明) nに関する帰納法で示す。 n=2…明らか n=3…☆により明らか。 ψ(n-1)までがwell-definedであると仮定する。 ψnがwell-definedであることを示すには ψ(n-1)(φ(X1,X2),X3,…,Xn)=…=ψ(n-1)(X1,…,X(n-2),φ(X(n-1),Xn)) (∀Xi∈M,i=1,…n)をいえばよい。 ψ(n-1)(X1,…,X(j-1),φ(Xj,X(j+1)),X(j+2),…,Xn)とψ(n-1)(X1,…,Xj,φ(X(j+1),X(j+2)),X(j+3),…,Xn)が等しいことをいえばOK。(j=1,…,n-2) ψ(n-1)のwell-defined性より ψ(n-1)(X1,…,X(j-1),φ(Xj,X(j+1)),X(j+2),…,Xn)=ψ(n-2)(X1,…,X(j-1),φ(φ(Xj,X(j+1)),X(j+2)),X(j+3),…,Xn)…(1) ψ(n-1)(X1,…,Xj,φ(X(j+1),X(j+2)),X(j+3),…,Xn)=ψ(n-2)(X1,…,X(j-1),φ(Xj,φ(X(j+1),X(j+2))),X(j+3),…,Xn)…(2) ☆より(1)=(2)がわかるから ψ(n-1)(X1,…,X(j-1),φ(Xj,X(j+1)),X(j+2),…,Xn)とψ(n-1)(X1,…,Xj,φ(X(j+1),X(j+2)),X(j+3),…,Xn)が等しい。 したがってψnはwell-definedである。