ポアソン分布とチャビシェフの不等式による下界決定

このQ&Aのポイント
  • ポアソン分布を使って、P(75<X<125)における下界を決定するためには、チャビシェフの不等式を用います。
  • ポアソン分布は、特定の事象が起こる確率が小さく、試行回数が多い場合に発生回数の分布として表れます。
  • チャビシェフの不等式は、確率変数の平均と分散が有限な場合、ある範囲からの外れ具合を制約する不等式です。
回答を見る
  • ベストアンサー

Xはポアソン分布をμ=100で持つとせよ。P(75<X<125)における下界を決定する為にチャビシェフの不等式を使え

皆様,こんにちは。確率の問題なのですがどうぞ宜しくお願い致します。 [問題]Xはポアソン分布をμ=100で持つとせよ。P(75<X<125)における下界を決定する為にチャビシェフの不等式を使え。  なのですがどのようにして解けば宜しいのでしょうか? ググってみましたら ポアソン分布とは 「ポアソン分布 特定の事象が起こる確率pはきわめて小さいが、試行回数nが非常に多いためにその 事象が何回かは起こるときその生起回数の分布として表れる。 パラメータλのポアソン分布の確率密度関数は p_λ(k)=(λ^k)e^-λ/k!である。ポアソン分布の平均、分散はともにλである」 といったものです。 チェビシェフの不等式とは 「確率変数Xの平均E[X]=μ,分散V[X]=σ^2が共に有限ならば任意のk(>0) 対して,P(|X-μ|≧kσ)≦1/k^2 ※離散の分布,連続の分布問わずこの不等式成立する」

質問者が選んだベストアンサー

  • ベストアンサー
noname#50894
noname#50894
回答No.1

>チェビシェフの不等式とは >「確率変数Xの平均E[X]=μ,分散V[X]=σ^2が共に有限ならば任意のk(>0) >対して,P(|X-μ|≧kσ)≦1/k^2 上の式を、ご質問の事例に適用すれば μ=100,分散σ^2=μ=100からσ=10なので、P(75<X<125)を P(|X-μ|≧kσ)=1-P(|X-μ|<kσ) の形に変形出来ますね。このときのkの値はどうなりますか?

hhozumi
質問者

お礼

アドバイス有難うございます。 早速,試してみました。 > μ=100,分散σ^2=μ=100からσ=10なので、P(75<X<125)を > P(|X-μ|≧kσ)=1-P(|X-μ|<kσ) > の形に変形出来ますね。このときのkの値はどうなりますか? P(75<X<125)=1-P(100-10k<X<100+10k)となり 左辺はλ^125e^(-λ/125!)-λ^75e^(λ/75!) 右辺は1-λ^(100+10k)e^(-λ/(100+10k)!)-λ^(100-10k)e^(-λ/(100-10k)!) となりましたがこれでいいのでしょうか? うーん、でもこれからどうやってkを求めればいいのでしょうか? (どうも勘違いしてそうな)

関連するQ&A

  • 確率変数XがP(X=1)=P(X=2)なるポアソン分布を持つならばP(X=4)を

    もし確率変数XがP(X=1)=P(X=2)なるポアソン分布を持つならばP(X=4)を求めよ。 という類の問題なのですがどなたか解き方をご教示ください。 ポアソン分布とは 「ポアソン分布 特定の事象が起こる確率pはきわめて小さいが、試行回数nが非常に多いためにその 事象が何回かは起こるときその生起回数の分布として表れる。 パラメータλのポアソン分布の確率密度関数は p_λ(k)=(λ^k)e^-λ/k!である。ポアソン分布の平均、分散はともにλである」 といったものです。

  • ポアソン分布

    {Xj}を同一分布をなす互いに独立なベルヌーイ確率変数列とする(ここで、P[Xj=1]=p, P[Xj=0]=1-p)。SN=X1+X2+・・・+XNを確率変数Xjのランダムな個数N個の和とする。ここで、Nは平均λのポアソン分布をなすものとする。このとき、SNは平均λpのポアソン分布をなすことを証明せよ。という問いに対してなのですが、 Xj の和をとる個数 N がポアソン分布に従って変化するとき、Xj の和の分布を考えればよいことはわかりました。 N 個の確率変数の和が n になる確率は N C n p^n (1-p)^(N-n) であり、和を取る確率変数の数が N である確率はポアソン分布なので e^(-λ) λ^N / (N !) 和が n になる確率は、 確率変数が N=n 個でかつ和が n 確率変数が N=n+1 個でかつ和が n 確率変数が N=n+2 個でかつ和が n ・・・・ で N が無限個まで確率の和を取ればよいので、 Σ(k=0→∞)の{ (n+k) p^n (1-p)^k } と考えたのですが、ここから先に進めません。 おそらく途中で間違えてしまったと思うのですが、ご指摘いただけないでしょうか。

  • ポアソン分布について

    ※長文です。すべてに解答できない場合は,特に★★★★★より後の部分についてだけでも教えてください。よろしくお願いします。 テキストでは二項分布からポアソン分布を導いています。 二項分布は, ・各試行の結果,Aかその余事象aのいずれかが必ず起こる ・各試行は独立である ・各試行におけるAの生起確率Pr{A}は常に一定でpである を満たす試行をN回行った時,Aの発生回数Xの確率分布です。 ここからNp=λ(=const.)を維持しながらN→∞の極限を考えることで,ポアソン分布を導いています。これは次のような理解でよろしいでしょうか。すなわち, 箱の中にN個の玉が入っていて,赤が1個,黒がN-1個の内訳になっています。ここから1個取り出したとき,それが赤である事象をAとすると,Pr{A}=1/Nです。そして取り出した玉を戻して,何度も同じ試行を行うと, ・各試行で必ずA(赤が出る)かa(黒が出る)が起こる ・各試行は明らかに独立である ・各試行においてPr{A}=1/N=p(一定)である を満たし,ベルヌーイ試行列を成します。ここでpNを一定値1に保つ場合を考えると,任意のNに対して,p=1/Nでなければならないので,結局,Nをnだけ増すとき,赤玉は1個のままで黒玉をn個増せば,p=1/(N+n)となり,pN=1を維持します。よって,pN=1を保ちつつN→∞とすることは,書き方は不正確かもしれませんが,感覚的には赤玉1個,黒玉無限個,試行回数無限回ということでいいでしょうか。そして, 『この試行で赤を3回取り出す確率を求めよ。』は,Pr{X=3}=exp(-1)×1^3/3!=1/6eということですか? 逆に,以上の問題において,Aは赤が出る事象ですし,pは赤が出る確率です。では,以下の問題はポアソン分布と関係があるそうなのですが,事象Aと確率pが何に相当するのかがわかりません。 ★★★★★ ペトリ板の細菌の集落を顕微鏡により観察し,円形の視野に正方形の網の目をかけ,各正方形の区画内の細菌集落数kを数える。その結果を以下に示す。各kに対する正方形の数が観測度数である。 k:=正方形内の細菌集落数 f:=観測度数 Np:=理論度数 k f Np 0 5  6.1 1 19 18.0 2 26 26.7 3 26 26.4 4 21 19.6 5 13 11.7 6 8  9.5 各区画内を順番に検査することを試行ととらえて,そこに集落がある事象をA,その確率をpとすると考えると,集落がたくさんある区画の説明がつきません。集落がない事象をA,1個ある事象をB,2個ある事象をC,…としていくとこれはベルヌーイ試行列ではありません。この問題において, ・そもそも何を試行としているのか ・そしてその試行のもとで必ず起こるA,aはそれぞれ何か という点が全く分かりません。どのように解釈すればこの問題はポアソン分布と関係する問題なのでしょうか。 長くなってしまいましたが,よろしくお願いします。

  • ポアソン分布

    ポアソン分布 ポアソン分布が発生確率が低い事象の記述に適しているという理由がいまいち分かりません。 導出の過程で n→∞, p→0, np→λ としたから、 n≒∞、p≒0のような事象に適しているという認識であっていますか? 発生が稀でないものに適用したら二項分布での結果とは全然近似しないのですよね?

  • P{x: |x-5.5|>=1.6σ}

    チェビシェフの不等式 分布が0から11 P(|Xーμ|≧kσ) <=1/k^2を使って、P{x: |x-5.5|>=1.6σ}のσについて 解けという問題で、1/1.6^2 = 0.39 と解くことができますが、 チェビシェフを使わずに、上記の問題を直接計算しろという問題が解けません。 答えは0.076とわかっていますが、解法はどうなるんでしょうか?

  • ポアソン分布

    確率変数X,Yは互いに独立で、ともに平均1のポアソン分布に従う。このときP{XY≦3}を求めよ。 私は P{XY≦3}=P{X=0}+P{X=1,Y=1}+P{X=2,Y=1}+P{X=1,Y=2}+P{X=3,Y=1}+P{X=1,Y=3}を独立性を使って計算し、求める確立は2e^(-1)+(7/3)e^(-2) だ思ったのですが答えには 2e^(-1)+4/3e^(-2)と書いてあります。 どうしてか教えてください。

  • ポアソン分布の問題で

    ある窓口を1時間に訪れる人数Kは、平均1.5人とする。このとき、人数Kはポアソン分布に従うとして、1時間に3人以上訪れる確率を求める。平均1.5人だからλ=1.5として、1時間にk人訪れる確率は P1.5(k) = (1.5)^k / k! * e^-1.5 となる。したがって、この窓口に1時間に3人以上訪れる確率は、1 - ( P1.5(0) + P1.5(1) + P1.5(2) ) = 0.001 となる。 という問題&解説があるのですが、 P1.5(k) = (1.5)^k / k! * e^-1.5 の計算の仕方がわかりません…。 テイラー展開を使うらしいと聞いたのですが、そうすると数値が正確なものを求めるのではなく、およそ0.001ということになりませんか? (私の計算) e^1.5 = (1.5)^0/0! + (1.5)^1/1! + (1.5)^2/2! … = 1 + 1.5 + 1.125 … ここから先どうすればいいのかで詰まっています。 どなたか解説お願いします…。

  • このポアソン分布の練習問題が解けません。

    [Q]Messages arrive at a telegraph office according to a Poisson process with rate λ=3 per hour. What is the probability that no message arrives between times 8:00 and 10:00 in the morning? (1) What is the expected value of the number of messages that arrive between 8:00 and 10:00 in the morning? (2) What is the probability density function of the arrival time of the third message after 2 pm? 「[問]メッセージが一時間当たりλ=3のPoisson分布に従って交換局に届く。 午前8:00から午前10:00までにメッセージが届かない確率は幾らか? (1) 午前8:00から午前10:00までに届くメッセージ数の期待値は幾らか? (2) 午後2時以降に3番目のメッセージが届く確率密度関数は何か?」 という問題に難儀してます。 『[例題] B先生の携帯には1日平均2件のメールが入ってくる。この1日に入ってくるメールの件数を確率変数Xとし,これが平均μ=2のポアソン分布P_o(2)に従うものとする。 (i) P_o(2)の確率関数P_p(x)を示せ。(ii) 1日に入ってくるメールが3件以上となる確率を求めよ [(i)の解] ポアソン分布P_o(μ)の確率関数P_p(x)はP_p(x)=e^-μ・μ^x/x!より μ=2のポアソン分布P_o(2)の確率変数P_p(x)はP_p(x)=e^-2・2^x/x! [(ii)の解] 1日のメール件数Xが3以上となる確率P(X≧3)は,全確率1から余事象の確率P(X≧2)を引いて求める。 P(X≧2)はX=0,1,2となる時の確率の総和より, 求める確率P(X≧3)は P(X≧3)=1-P(X≧2)=1-(P_p(0)+P_p(1)+P_p(2))=1-(e^-2・2^0/0!+e^-2・2^1/1!+e^-2・2^2/2!) =1-e^-2(1+2+2)=1-5/e^2』 を参考にしてみました。"一時間当たりλ=3"が"1日平均2件"に相当すると考えまして ポアソン分布P_o(μ)の確率関数P_p(x)はP_p(x)=e^-λ・λ^x/x!より λ=3のポアソン分布P_o(3)の確率変数P_p(x)はP_p(x)=e^-3・3^x/x! …(1) 1時間に何回かのメッセージが届く確率は1 1時間に0回のメッセージが届く確率は(1)からP(X≦0)=P_p(0)=e^-3・3^0/0!=1/e^3 だから午前8:00から午前10:00までにメッセージが届かない確率は P(X≦0)・P(X≦0)=1/e^3・1/e^3=1/e^6 …(2) 午前0時から午前8時までに何回かのメッセージが届く確率は1・1・1・1・1・1・1・1 …(3) よって(2)と(3)から1・1・1・1・1・1・1・1・1/e^3・1/e^3=1/e^6 [(1)の解] 午前8:00から午前10:00までにメッセージが0回の確率は1/e^3・1/e^3 午前8:00から午前10:00までにメッセージが1回の確率は3/e^3・3/e^3 午前8:00から午前10:00までにメッセージが2回の確率は9/e^3・9/e^3 … なので 0(1/e^3・1/e^3)+1(3/e^3・3/e^3)+2(9/e^3・9/e^3)+… =Σ[n=0..∞]n・3^n/n!・1/e^3=1/e^3Σ[n=0..∞]3^n/(n-1)! [(2)の解] 午前0時から午後1時までに1件/hずつ計2件のメッセージが届く確率は(13C1)・3/e^3・×(13C1)・3/e^3 午前0時から午後1時までに2件/hのメッセージが届く確率は(13C1)・9/e^3 そして午後2時に3件目のメッセージが届く確率は3/e^3 以上の事から (13C1)・3/e^3・×(13C1)・3/e^3+(13C1)・9/e^3+3/e^3 ここから確率密度関数はどのようにして求めれるのでしょうか?

  • 水中の微粒子分布はポアソン分布になるのでしょうか?

    「100mlの水に500個の微粒子を入れ、均一になるように良く撹拌してあります。ここから10mlすくい取ったとき、x個の微粒子が存在する確率を求めたい」という場合、ポアソン分布になっているのでしょうか。 100ml中に500個では微粒子数が多すぎてポアソン分布になっていないような気がするのですが、10^5μl中に500個あると考えるとポアソン分布でいいような気もします。 私は、ポアソン分布の確率関数 f(x)=e^(-λ)*λ^x/x! において、 n:サンプル量(μl) p:微粒子濃度(個/μl) λ=np とし、n=10^4、 p=5*10^(-3)、 λ=50 より f(x)=e^(-50)*50^x/x! と考えたのですが、合っているでしょうか? 容量の単位を変えると微粒子濃度が大きくなったり小さくなったり感じられ、ポアソン分布の適用基準がわかりません。 本などで調べたのですが類似の例がなく、良くわかりません。宜しくお願いいたします。

  • 二項分布とポアソン分布、それぞれで求まる確率が2倍も異なるのですが

     こちらに計算ミスがあれば、誠に申し訳ありません。  二項分布とポアソン分布、それぞれで求まる確率が2倍も異なるので、困っています。  次のような問いがあるのです。 「くじが当たる確率は1%であり、5回くじを引くとする。当たりが3回出る確率を、ポアソン分布を用いて近似的に計算せよ。」  二項分布でも解けなくはない問いです。  5C3×1%×1%×1%×99%×99%=0.000009801  ところがこれを、ポアソン分布を用いて計算せよとのことですので、  ポアソン分布の確率関数p(x)は、λ(ラムダ)を用いれば、  自然対数の底eのマイナスλ乗と、λのx乗との積を、xの階乗で除した式で表されますので、  (あえて関数式を書けば p(x)=(λ^x)*exp(-λ)÷x! )  λ=0.05を代入し、p(3)を求めればよいわけですから、  p(3)= 0.05^3 × exp(-0.05) ÷ 3!    ≒ 0.000125 × 0.9512 × 6    ≒ 0.0000198  と求まります。  これでは、ポアソン分布を用いて近似的に計算せよと言いながら、求まる確率が2倍も違う点で、とても近似的に計算しているとは思えません。  ポアソン分布の関数式を覚えていないもしくは度忘れした解答者がとりあえず二項分布で解いてみても採点者は一発で間違いと分かるように数値を設定したと考えることもできますが、ポアソン分布の精度が疑わしくなります。  あるいは、こちらの計算ミスがあれば、気づかずにいるミスを直ちに改めたいと思いますので、どなたかお答えを願います。