二重積分の問題がわかりません

このQ&Aのポイント
  • 次の二重積分を実行せよ。極座標に変換して計算する際に困っています。
  • D1の範囲で積分を実行する際に、∫1/√{1+(1/cosθ)^2}dθという項が出てきてうまく解けません。
  • tanθ=tやcosθ=tと置換してみましたが、うまい形に変形できずに困っています。どなたか分かる方、教えてください。
回答を見る
  • ベストアンサー

二重積分の問題がわかりません。

問題 次の二重積分を実行せよ。∬dxdy/((a^2+x^2+y^2)^(3/2)) D={(x,y);0≦x≦a,0≦y≦a}  極座標に変換して ∬rdrdθ/((a^2+r^2)^(3/2)) D1={(r,θ); 0≦r≦a/cosθ, 0≦θ≦π/4}  D2={(r,θ); 0≦r≦a/sinθ, π/4≦θ≦π/2} D1の範囲で積分を実行してったときに∫1/√{1+(1/cosθ)^2}dθという項がでてくるのですが、これをうまく積分することが出来ません。 一応、tanθ=tやcosθ=tと置換してみたりもしたのですが、うまい形に変形できませんし・・ どなたか分かる方、教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
noname#50894
noname#50894
回答No.1

>∫1/√{1+(1/cosθ)^2}dθ =cosθ/√{1+(cosθ)^2}=cosθ/√{2-(sinθ)^2} t=sinθと置いて、計算出来ませんか。

stepbystop
質問者

お礼

確かにt=sinθとおくと積分できますね! 何でt=sinθだけ試さなかったんだろう・・・ どうもありがとうございました。

関連するQ&A

  • 重積分の問題なのですが・・・。

    重積分の問題なのですが・・・。 ∬(y-6)(x^2+y^2)^(1/2)dxdy 積分区間はx^2+y^2<=4です。 x=rcosθ, y=rsinθとおいて、積分区間の条件より 0<=r<=2, 0<=θ<=2πとおける さらにこのときdxdy=rdrdθとなる 与式=∫[o<-2π]∫[0<-2]{rsinθ-6)(r^2cos^2θ+r^2sin^2θ)^(1/2)}rdrdθ   =∬{(rsinθ-6)r^2}drdθ   =∫[1/4sinθr^4-2r^3](0<-2)dθ   =∫(4sinθ-16)dθ   =[-4cosθ-16θ](0<-2π)   =(-4-32π)-(-4)   =-32π とマイナスになってしまいました、どこが間違えているのでしょうか? すみませんがよろしくお願いします。

  • 積分の証明

    ∫{1/√(x^2+A)}dx = log|x+√(x^2+A)| の証明をしようとしています。 x=tanθと置いて、置換積分をすると、 ∫secθ dθ となりました。 ∫{cosθ/(1-(sinθ)^2)}dθ と変形して、t=sinθと置いて、置換積分をしたら、 1/2*log{(t+1)/(t-1)} になりました。 しかし、変数をtからxにできないで困っています。 どうか、アドバイスをお願いします。

  • 2重積分

    ∬D log(x^2+y^2)dxdy,D={(x,y)|1≦x^2+y^2≦4}を積分しなさい…という問題です。極座標の変数変換を使うのはわかるのですが、どう計算すればいいかわからなくなってきました。 x=γcosθ,y=γsinθをxとyの範囲にそれぞれ代入しますよね。そこからどうすればいいのですか?

  • 二重積分の問題です。ご協力お願いします。

    テスト勉強中にわからない問題がありましたので質問させていただきました。 よろしくおねがいします。 I=∬<D>{1/(x²+y²)}dxdy Dは、言葉で説明させていただきます。 Dは、x²+y²=4,x²+y²=1の二重になっている円の間の部分で、y>0を満たし,原点を通りx軸となす角が2π/3の直線(y=-√(3)x)よりもx軸の正の方向にある、食べかけのドーナツのような領域です。 恥ずかしながら、自分は次のようにして行き詰まりました。 外側の円と内側の円を別々に求めようとしました。 極座標で考えようとしてx-2=rcosθ,y=rsinθと置き、(2,0)を基準に考え、 π/2≦θ<5π/6ではr=4cos(π-θ) 5π/6≦θ<πではy=-√(3)xに極座標のパラメーターを代入して求めた r=-2√(3)/sin(θ+π/3) これらを使っていざ積分しようとしたら、(2,0)を基準にした極座標のパラメーターをつかうと I=∬<D>{r/(4+4rcosθ+r²)}dθdr になり、積分に困りました。 答えてくださる方がいらしたら、詳しく解説していただけると大変ありがたいです。

  • 重積分

    次の重積分について、問題を解いてください。 R>0として、領域D,D_+,D_- が D = {(x,y)|0≦x≦R,0≦y≦R} D_+ = {(x,y)|x^2+y^2≦2R^2,x≧0,y≧0} D_- = {(x,y)|x^2+y^2≦R^2,x≧0,y≧0} で 与えられるとき、以下の問いに答えよ。ただし、aは正の定数である。 (1) 2重積分∮∮D e^{-a(x^2+y^2)}dxdy,∮∮D_+ e^{-a(x^2+y^2)}dxdy,∮∮D_- e^{-a(x^2+y^2)}dxdyの大小関係を示しなさい。 (2) 2重積分 ,∮∮D_- e^{-a(x^2+y^2)}dxdyを計算しなさい。 (3) (2)の結果をR→∞としたときの極限値を求めよ。 (4) 定積分∮(0→∞) e^(-ax^2) dx = (1/2)√(π/a) を証明せよ。 途中式もお願いします。

  • 2重積分の問題です

    次の2重積分の値を極座標に変換して求めよ。Dは()内の不等式の表す領域とし、aは正の定数とする。 (1) ∬D xdxdy (x≧0、y≧0、x^2+y^2≦a^2) (2) ∬D log(x^2+y^2)dxdy (4≦x^2+y^2≦9) よろしくお願いします。

  • 定積分の問題

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=-rsinθ 関数行列式|D|=-rとなります。 つまり dxdyーーーーーー>-rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ](- r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ∫[ 「(1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](sinθ^3-1)dθ =a^3/3[(ーθーcosθ+(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(ーπ/2ー2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか?

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 定積分の問題(2)

    [1]変数変換を用いて、次の重積分を求めよ。 ∬D √(a^2-x^2-y^2)dxdy , D={(x,y);x^2+y^2≦ax} 半径=aの球を考える。 x^2+y^2+z^2=a^2であり。 z=√(a^2-x^2-y^2)となり、被積分関数は上半球となる。 一方、積分領域は D={(x,y);x^2+y^2≦x} ={(x,y);(x-a/2)^2+y^2≦(a/2)^2} となり。 中心点(a/2、0)で半径a/2の低円の円柱が切り取る 体積をもとめることになります。 ・積分領域「-π/2、0」の場合 r=acosθ x=rcosθ y=rsinθ ヤコビヤン|J|=rとなります。 つまり dxdyーーー>rdθdr・・・・・(3) V=∫[-π/2、0]∫[0,acosθ]( r)√(a^2-r^2) dr dθ =∫[-π/2、0]dθ 「(-1/3){(a^2-r^2)^3/2}」 [r=0,acosθ] =a^3/3∫[-π/2、0](1-sinθ^3)dθ =a^3/3[(θ+cosθ-(1/3)cosθ^3)[θ=-π/2、0] =(a^3/3)(π/2+2/3)・・・・・(4) となり、正解 (a^3/3)(π/2ー2/3)になりません。 どこが間違いでしょうか

  • 極座標に変換する二重積分について質問です。

    極座標に変換する二重積分について質問です。 x=rcosθ、y=rsinθの時、dxdy=rdrdθになるのはどうしてですか? わかりやすく教えていただけると助かります。