• ベストアンサー

はりの微分方程式

utano-nanahoの回答

回答No.1

本質的には同じことをやることになりますが、モーメント面積定理あるいはモールの定理を使うとよろしいでしょう。 仮想仕事の原理を使うという手もあります。 いずれにしても静定梁ですから、そんなにややこしいことにはならないと思いますが。

関連するQ&A

  • 微分方程式 接線方程式

    曲線y=f(x)が任意の点Pでの接線が x軸と交わる点をQ、y軸と交わる点をRとするときPがQRの中点である。 y=f(x)を満たす微分方程式を求める問題で 解答は 接線の方程式 y=y'(x-a)+b    (1) 点Qのとき0=y'(x-a)+b       (2) 点PはQRの中点→a=x/2 b=y/2 (3) (3)を(2)に代入して微分方程式を立てています。 なぜですか? (1)を立式した時点で傾きy'と通過する点(3)がわかるので(1)に代入しませんか?

  • 偏微分方程式に関する問題

    偏微分方程式に関する以下の問いに答えなさい。 ある2次元スカラー関数φ(x,y)に対し、流速ベクトルq=(q_x,q_y)が存在し、以下の関係を満たすものとする(q_xとはqに下付きでxということ、q_yに関しても同じ、以下、下付きの文字の前には_を置く)。 ベクトルq=-β(∂φ/∂x, ∂φ/∂y)      (a) さらにスカラーφの時間変化率∂φ/∂tについて、以下のバランス式が成立しているものとする。 -α(∂φ/∂t)=((∂q_x)/∂x)+((∂q_y)/∂y) (b) ただし、x、yは2次元直交(デカルト)座標系、tは時間、α、βは定数、とする。 (1)式(a)を(b)に代入してq_x、q_yを消去し、φを従属変数とする偏微分方程式(直交座標系使用)を導け。 (2)上記偏微分方程式で右辺項を0とした方程式は、特に何と呼ばれるか。 (3)上記(2)の場合に相当する数物理学現象を1つ示せ。 (4)φ=X(x)Y(y)と解の形を仮定し、上記(2)の偏微分方程式に代入し、X(x)、Y(y)それぞれに対する常微分方程式を導け。 最初の(1)問目から躓いています・・・ (a)式より、q_x=-β(∂φ/∂x)、q_y=-β(∂φ/∂y)となり、これを(b)式に代入しました。計算していくと、 α(∂φ/∂t)=β(((∂^2)φ/∂x^2)+((∂^2)φ/∂y^2))となりました。 答えはこんな感じでいいんですか? それとも、さらに変形するべきなのか・・・ そして、(2)問目です。 まず、名前についてなんですが、斉次方程式(同次方程式)でいいんですか? それとも、放物型とか双曲型とか楕円型とかそのようなことを書いたらいいのか…。 候補としては、一瞬Laplace方程式かなって思ったり・・・ 個人的には斉次方程式かなと思うのですが・・・ そして、0にするというのもいまいちわかっていません。 実際(1)の答えがよく求まっていないので、どこを0にしたらいいのか 微妙というのもあるのですが…。 個人的には、α=0と置くのかなとも思ったのですが・・・ 分からなくなってきました・・・ (3)(4)についても何か教えていただけると嬉しいです。 特に(1)(2)の質問お願いします。 あと、できれば(3)も・・・ 問題数が多く、大変申し訳なく思うのですが、何かヒントだけでもいただけると嬉しいです。

  • 微分方程式

    dy/dx-2*x^2*e^x*y+e^x*y^2=2*x-x^4*e^x に対しての次の問のとき方について教えてください (1)x^a が微分方程式の解となるように実数aを求めよ (2) a を(1)で求めたものとする。y=x^a+zを微分方程式に代入して,zの満たす微分方程式を求めよ。 (3)(2)で求めたzの微分方程式を解いて,もとの微分方程式の解yを求めよ (1)についてはa=2という答えだと思うのですが,(2)以降の解き方の手順がわかりません。解法がわかるのであればよろしくおねがいします。

  • 微分方程式の問題です。

    曲線y=f(x)(0<a≦x≦b)上の点P(t,f(t))(a<t<b)における接線をlとし、l上の点でそのx座標がt+1となる点をQとおく。原点をOとして、ベクトルOPとベクトルPQのなす角をθとする。次の問いに答えよ。 (1)cosθをtを用いて表せ。 (2)a=1/4,b=1,f(x)=√xのとき、θが最大となるtを求めよ。 (3)a=1/2,b=2とする。全てのt(1/2<t<2)についてベクトルOPとベクトルPQが直行し、f(1)=√3となるf(x)を求めよ。 という問題です。微分方程式は授業で習っておらず自力で勉強しています。解答がなく、解き方が分からないので教えていただけないでしょうか。よろしくお願いします。

  • 微分方程式

    微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?

  • 微分方程式の解法

    直方体に関する熱伝導方程式を解こうとして,微分方程式に出くわし,行き詰ってしまいました. 直方体の温度分布を T (x) とします.直方体の長さを L として,片方の端の温度を T (0), もう片方の端の温度を T (L) とします. また熱伝導率が温度の関数で    κ (T) = 1 / (a + b T + c T^2) と近似的に表現されます. フーリエの法則に基づいて,定常状態における熱伝導方程式を解いてみたところ    ∂{ κ・∂T/∂x } / ∂x = 0 という式が出てきました.この方程式を一回積分すると    κ (T)・(∂T /∂x) = A = (定数) なる式となります.この微分方程式の解き方が分かりません.というより,解析的に解ける式なのかどうかすら判断できず困っています.この方程式は解けるでしょうか? また,仮に解析的に解けないとして,問題となっている微分方程式の両辺をひっくり返して    ∂x / ∂T = κ (T) / A と変形することは可能でしょうか? この変形が可能ならば,κ (T) をマクローリン展開してからラプラス変換に持ち込もうかと考えているのですが….

  • 微分方程式が解けない!

    (x^2-1)y'=2xy y(0)=1 の微分方程式をyについて解きたいのですが、 変数分離形にして解く y=ax^2+bx+cとおきこれを代入してa,b,cの値を求める の2つの方法で解いてみたのですが、上手くいきませんでした。他にこの方程式を解く方法があるのでしょうか? 宜しければ、アドバイスお願いします。 答えは1-x^2になるそうです。

  • 材料力学の単純支持はりについての問題です

    図のような単純支持はりに三角形に荷重W(x)が下向きにかかるとして、支点反力やせん断力、曲げモーメントの式を立てたのですが、この曲げモーメントの最大値Mmaxはいくらでしょうか?私はこの曲げモーメントの式を微分して、その微分後の式=0となる点x、つまり傾き0の点(極地は傾き0のため)を求めようとしたのですが、うまくxの値を求めることができません。問題では「Mmaxを求めろ」と言っているのですが・・・この方法であってるんでしょうか?それとも別の方法でMmaxを求めるのでしょうか?(ちなみに求めた曲げモーメントの式は M={(Wo*x^3)/6l}-{(Wo*x^2)/2}+{(Wol*x)/3} で合ってます と言われました)

  • 微分方程式をさらに微分する

    下の画像のような微分方程式(*)においてR=(z^2-1)^Lとする。 (*)をzで1回微分すると(1)式になり、さらに1回微分して(2)式、また微分して(3)式のようになるようですが、どうしてこうなるのでしょうか。それに微分方程式なのにそれをまた微分するという操作がよく分かりません。文章の通りに単純に微分しただけなんでしょうけど、-2(L-2)zが-2(L-3)zとなったり、-2(2L-1)が-2(3L-3)となったりと、どのようにして係数が変化したのか解説をお願いします。m(__)m

  • チェビシェフの微分方程式

    「y=cos(kθ),x=cosθ がチェビシェフの微分方程式を満たすことを示せ」 という問題について,質問させて頂きます。 y'とy'',それからkの値(?)を出してチェビシェフの微分方程式に代入すればいいと思うのですが,微分の方法がよくわかりません・・。 重み関数w(x)=1/√(1-x^2)を用いるとは思うのですが,どう使っていいかがよくわからないです。 よければ重み関数の考え方と使い方,また別の解き方等があれば是非教えて頂きたいです。何方かよろしくお願いします。