• ベストアンサー

証明ですごく困ってます

こんにちは。考えてると分かりそうで分からなく気持ち悪くて困ってます。上に有界な有理数の集合は最小上界を必ず持つかどうか?という問題で、定義によるともしSが有理数の集合でUがSのupper boundである時、Sの最小上界はUの要素 a (a≤ x すべてのx∈U )であるとあったので、もしSの範囲が t(S内の有理数) <2とした時と t ≦2とした時、前者の場合も後者の場合も2がupper boundになるが、前者の場合は2は最小上界にはならないと考えたのですが、正しいでしょうか?詳しいすっきりする回答宜しくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

有理数は全順序を持つので「上に有界な有理数集合は, 『実数の』最小上界を持つ」は正しいはず. 一方, 「上に有界な有理数集合が, 『有理数の』最小上界を持つ」ということであれば, 一般には no です. 例えば, 「√2 を 10進展開して有限桁で打ち切った値」は全て有理数ですが, それらからなる集合 (当然上に有界) の最小上界である √2 は有理数じゃないですね. S1 = { x in Q | x < 2 }, S2 = { x in Q | x ≦ 2 } としてみます. 上界は, どちらも U = { x | x ≧ 2 } です (確認してみてください). 従って, 上限 = 最小上界はどちらも 2 となります.

kotie
質問者

お礼

何とか理解できました。ありがとうございました。

kotie
質問者

補足

親切な説明どうもありがとうございます。理解は出来たのですが、数学的に√2は有理数でない事をどう説明すればよいのでしょうか?

すると、全ての回答が全文表示されます。

その他の回答 (2)

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.3

#もうちょっと読みやすく・・・なぜ「upper bound」だけ英語なのか(^^; 最小上界・・・上限ですね. S1 = { x in Q | x < 2 }, S2 = { x in Q | x ≦ 2 } S3 = { x in R | x < 2 } S4 = { x in R | x ≦ 2 } 全部「上限」は2です. 「上限の定義」と「有理数の稠密性」を理解していますか? 実数の部分集合Aに対して,実数αがAの上限であるとは 任意の正の数εに対して, α-ε< a ≦ α を満たすAの要素aが存在することです. そして,有理数の稠密性より 上のS1からS4まで共通に 任意の正の数εに対して 2-ε< a ≦ 2 と満たすS1からS4の要素aが存在します. #ぶっちゃけ。。。 #1.9,1.99,1.999,・・・って列を考えるだけでもOK

すると、全ての回答が全文表示されます。
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

あ, しまった. #1 の最初の文は誤解を招くおそれがあります. ごめんなさい. 実数の構成法として, 「収束する有理数列」を使うってのがあります. それを念頭においてました.

すると、全ての回答が全文表示されます。

関連するQ&A

  • 集合、最大元&最小元と上限&下限

    S ⊆ Q(有理数)、x∈S ⇔ 18x-x^3≧0 a)Sは最大元を持っているか?持っていれば何か? b)Sは最小元を持っているか?持っていれば何か? c)Sに上界はあるか?あれば何か? d)Sに下界はあるか?あれば何か? 途中の過程も教えていただけると助かります。

  • 部分空間の証明

    Sを距離空間、Yをノルム空間とし、SからYへの連続写像全体の集合をC(S,Y)で表す。また、Cb(S,Y)=Fb(S,Y)∩C(S,Y)と置く。 ただし、F(S,Y)はSからYへの写像全体の集合で、Fb(S,Y)={u∈F(S,Y)| sup(t∈S)||u(t)||_Y<∞}でとします。 この時Cb(S,Y)はFb(S,Y)の閉部分空間であることを示せ。 定義として Xの部分集合YがXの部分空間である ⇔∀u,v∈Y,∀α,β∈Kに対してαx+βy∈Y まず感覚的にですが、Cb(S,Y)⊂Fb(S,Y)なので部分集合であることはOK 後は∀u,v∈Cb(S,Y)、∀α,β∈Kに対してαx+βy∈Cb(S,Y)を示す。 u,v∈Cb(S,Y)よりx,y∈Fb(S,Y) 任意のt∈Sに対して、 ||(αu+βv)(t)||=||αu(t)+βv(t)|| ≦||αu(t)||+||βv(t)||=|α|*||u(t)||+|β|*||v(t)|| ≦|α|sup(t∈S)||u(t)||+|β|sup(t∈S)||v(t)|| となるので有界であることは示せました。 後は連続性と閉集合であることを示したいのですが、 これはどのように示せばいいのでしょうか? 連続写像の和、スカラー倍は確かに連続写像となることは、 集合と位相あたりの本に書いてあったような気がしましたが…。

  • 集合 上限 下限

    集合 上限 下限 Wikipediaによれば、 上界の集合の最小元(つまり、最小の上界)のことを、上限といい、sup(A) と書く。 下界の集合の最大元(つまり、最大の下界)のことを、下限といい、inf(A) と書く。 http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-kisosuri/supmax031208.pdf を参考にしたのですが理解出来できませんでした。 Aを実数の部分集合とするとき、 実数 a が、Aの上界であるとは、Aの任意の元x に対して、x≦a が成り立つことである。 そのなかで、最小の上界を上限と言う。 ピンときません・・・ 具体例を示して教えて頂けるとありがたいです。 ご回答よろしくお願い致します。

  • 空集合の扱い方について

    とっても読みにくい文章になってしまいましたが、回答お願いします。記述の仕方のささいな誤りは見逃してください… 「P(x)を満たす任意のx∈R(実数)がQ(x)を満たす。」という命題(命題1)について、 P(x)を満たすxが存在しないとき(つまり、{x∈R|P(x)}=Φのとき)、この命題は真だと説明されました。 理由としては、 「この命題が偽ならば、P(x)を満たすがQ(x)を満たさないxが反例として存在するはずだが、P(x)を満たすようなxはそもそも存在しない。よって真である。」 ということらしいのです。 そこで、Q(x)の否定をR(x)として、「P(x)を満たす任意のxがR(x)を満たす。」(命題2)の真を同様に証明することもできるのでしょうか? もしできるのなら続けて質問があります。 P(x)を満たすxの集合をS、Q(x)を満たすxの集合をTとすると、命題1が成り立つとき、SはTに含まれています。Sが空集合の場合を考えると、空集合は任意の集合の部分集合である、といえます。(これは授業でやりました) しかし命題2が成り立つならば、SはTに含まれていません。空集合はどの集合にも含まれない、ということになりますよね。 空集合は任意の集合の部分集合であると同時に、どの集合にも含まれないという理解で良いのでしょうか? また、Q(x)=(x≦u)とすると、「SはTの部分集合である⇔uはSの上界である」となり、命題1をこれまでと同様に命題1をあてはめると、任意の実数uは空集合Φの上界である。となり、命題2をあてはめると任意の実数uは空集合Φの下界である。ということになりますが、これも上と同様の、任意の実数uは空集合Φの上界であり、下界である、というふうに理解したのでよいですか?

  • 2の平方根が有理数で表せないことの証明

    √2が有理数でないことの証明についての質問です。 有理数だとしてn/mとおいて両辺を二乗して、、、という証明は知ってるのですが、別の証明を見たのですが、いまいちわからないところがありましたので質問させていただきました。 この証明は A={t|t^2<2, tは正の有理数} B={t|t^2>2, tは正の有理数} として、 ∀t∈A, ∃x∈A, t<x ∀t∈B, ∃x∈B, t>x ということを示して(ここまではわかりました) √2は有理数であらわせない→有理数の完備化が必要→実数の紹介という流れで行ってるのですが、なんでAが最大値を持たないこととBが最小値を持たないことが√2が有理数であらわせないことになるのでしょうか?

  • 証明問題

    x^2+y^2=1 (x>=0,y>=0) のすべての有理数解(x,yが共に有理数)は、 x=(1-x^2)/(1+x^2),y=2t/(1+x^2) (tは0=<t=<1,有理数) であることを示せ。 背理法で証明するのかと思いました。 x=(1-x^2)/(1+x^2),y=2t/(1+x^2)  以外に有理数解が存在するとする。 として考えていこうと思いましたが、このあとどう矛盾を導けばよいか 分かりません。また、別の考え方があるとおもうので、教えてもらえればと おもいます。

  • 集合の証明問題

    (uS)x(uT)⊆u{XxY|X∈S,Y∈T} (nS)x(nT)=n{XxY|X∈S,Y∈T} まったくわかりません。 方針だけでも結構ですので教えてください。 (S,Tは集合の集合です。)

  • 有理数の部分集合が開集合でない事の証明

    有理数全体の集合をQとし、このいかなる部分集合(Aとします)も開集合でないことを証明したいのですが、あと一歩のところで躓いています。 開集合の定義は ∀a∈A,∃δ>0,s.t δ-Ball B(a;δ)⊂A ですので 否定命題 ∃a∈A,∀δ>0,s.t B(a;δ)はAから出てしまう。 を示そうと考えました。(⊂の否定が出力できませんでした…) 実数全体は有理数全体と無理数全体で出来ていて、 実数のほとんどは無理数。 従って有理数のすぐ隣は無理数である。 ∴B(a;δ)はAから出てしまう。 このように回答したいのですが「有理数のすぐ隣は無理数である」これをどのように数学的に表現したらよいかわかりません。 わかる方いらっしゃいましたらご教授をお願いします。

  • 指数関数の定義について

    『微分積分学』(笠原、サイエンス社)の命題2.31にの指数法則の証明のところでわからないところがあります。 まず、実数a>1および任意の実数xに対してa^x=sup(a^r)と定義します。ここでsupはr≦xとなるすべての有理数rについての上限です。 こう定義したときに指数法則を満たすかどうかについて。 任意の実数x,yに対して指数法則(a^x)(a^y)=a^(x+y)を示す証明の中で、2つの集合{r+s;r,sは有理数,r≦x,r≦y}と{t;tは有理数,t≦x+y}とが等しいとあります。 たとえばx=π,y=-πのときt=0は後者の元ですが、t=r+s,r≦x,s≦yとなる有理数r,sが存在するならばr≦π,-r≦-πとなりr=πとなってしまってπ(円周率)は有理数ではないので矛盾, つまり上の相等は成り立たないように見えます。 私の推論のどこがおかしいのか教えてください。

  • 位相の証明

    T(x)={U⊂R | Uはxの近傍} 部分集合U⊂Rに対して、U∈T(x) ⇔∃ε>0,(x-ε,x+ε)⊂U

ファイルが開けない
このQ&Aのポイント
  • PC-A2377CAWで写真ファイルが開けない問題について相談があります。
  • 無線LAN接続で「.jpgクラスが登録されていません」と表示されており、写真ファイルが開けません。
  • NEC 121wareのソフトウェアに関するお問い合わせです。
回答を見る