• 締切済み

正十二角形の頂点を結んでできる三角形の数

正十二角形の頂点を結んでできる三角形の数がわかりません。どのようにして求めるのでしょうか。正多角形の頂点を結んでできる三角形の数を求める公式とかがあるのでしょうか。よろしくお願いします。

みんなの回答

  • 10ken16
  • ベストアンサー率27% (475/1721)
回答No.1

12ある頂点から、3つの頂点の「選びかた」 ですから、combination 12 3。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 平行と合同(中二レベル)の問題です

    この問題を教えてください。 ひとつの内角と外角の大きさの比が8:1である 正多角形がある。この正多角形のひとつの頂点から ひける対角線の数は? この多角形が正18角形というのまでわかるのですが 対角線の数がわかりません。 解答では18-3=15 答え15となっています。 正多角形の角ー3=頂点の数 という公式でもあるのですか? それとももっと別のアプローチでこうなっているのですか? よろしくおねがいいたします。

  • 正8角形を頂点とする三角形の数

    正8角形の頂点を結ぶ線と対角線からなる三角形のうち、すべての頂点を正八角形の頂点とする三角形の和の合計はいくつか という問題の解き方と答えを教えてください。 よろしくお願いします。 いくつ三角形ができるかということですが、自分がやったら24個になりました。 でも解答の選択肢は、4、8、56、112で答えがなかったので、わからなくなりました。

  • 正多面体の頂点の座標

    二次元の正多角形の頂点の座標は、複素平面を考えたときに 1 の n 乗根が単位円上の頂点として求まるわけですが、それと同じようなやり方で三次元の正多面体の頂点の (単位球上の) 座標を求める方法というのはあるでしょうか? 同じようなやり方でというか、比較的単純にパラメータ化された数式で表すことができるのでしょうか?

  • 凸多面体とオイラーの公式の問題です

    凸多面体のうち、すべての面が同じ正多角形からなり、各頂点には同じ数の辺が集まるものを正多面体という。オイラーの公式を考えることにより、正多面体の種類を決定せよ。 この問題がわからないのでよろしければ解説をお願いします。

  • 立方体の頂点を3色で塗る場合の数

    立方体の8つの頂点を3色で色をつけるとき、回転、反転で同じになるものは同一視して、何通りあるか考えています。 向かいあう正方形の片方の塗り方、を考えると  4頂点が同じ色・・・3_C_1 =3通り  4頂点が2色で塗られて、3つが同じ色、2つづつ同じ色 ・・・等々考えていっているのですが、場合の数が多すぎてわけが分からなくなります。 何か整理した考え方をアドバイス頂けると幸いです。

  • 次の4点は正四面体の頂点になりますか?

    4点(1,1,1)、(7,3,5)、(3,5,7)、(5,7,3)は正四面体の頂点となりますか?

  • 正12面体の中心から頂点までの距離の求め方

     正12面体の一辺の長さが決まっているとき、正12面体の中心から正5角形までの距離もしくは正12面体の中心から頂点までの距離の求めた方を知りたいのですが、よろしくお願いします。

  • オイラーの多面体公式

    オイラーの多面体公式 オイラーの正多面体公式 (頂点の数)+(面の数)-(辺の数)=2 この“2”というのは、どんな意味を表しているのでしょうか。 なぜ“2”になるのか説明しなければなりません。 どなたか参考になるページや詳しい説明がわかれば教えていただきたいです。 よろしくお願いします。

  • 斜方二十・十二面体の頂点を最小数で移動する方法

    数学の図形の問題なのですが、 斜方二十・十二面体(構成面:正三角形20枚、正方形30枚、正五角形12枚、辺:120、頂点:60)について、ある頂点から出発し、全ての辺を通ることを考える際の、最短移動数(通過する辺の最小数)の求め方は、どのように考えればよいでしょうか?複数回同じ辺を通ると思いますが、考え方がわかりません。 全ての辺が正方形に属することから、正方形の展開図で考えてみようと思いましたが、考えかたがわからず解けない状況です。

  • 正7角形での場合の数を教えてください。

    正7角形での場合の数を教えてください。 正7角形について、次の個数を求めよ。 問1.頂点を結んでできる四角形の個数 問2.対角線の本数 答案1A.        A   B         G    C           F     D     E 図形が書きにくいと思っていたらお絵かきが出来たので添付します。ナイスOKWave。 でも使いにくくて変になりましたがお願いします。 うわっ、「頂点を結ぶ」で迷っています。 たとえば、ACは当然「頂点を結んでいる」 では、ABは辺なのに「頂点を結んでいる」と捉えるんですか。 この捉え方で答えが違ってきます。 ではこの答案1AではABは辺でもあり、頂点を結んでいるとも解釈します。 そうすると・・何をどうすればいいのか・・ わからないので適当に四角形を挙げます。 並んでいる頂点を結ぶと ABCD BCDE CDEF DEFG EFGA FGAB GABC んー、まだわからない。 一つ飛ばしていくと ACDE BDEF CEFG DFGA EGAB FABC GBCD あれっ、これはもしかして図形ではなくABCDEFGの7個の中から・・みたいな。 なにか法則か規則、繰り返しの決まりを見つければ道が開けそう。 あっ、ひらめきました。たとえば、Aは他の3点と結べば4角形になる。 Bも同様、Cも同様 Aを固定してBCDEFGの中から3つを選ぶ・・だけなら組み合わせ、選んだあと並ばせるなら順列 どっちだろう。 たとえば ABCD  ACBD  ABDC  ACDB 文字頂点順に線を引くとABCD以外四角形にならない。 でも、問は頂点に順番をつけて辺を作れと言っているわけではないから、 順番や並びを考えなくていいから組み合わせ。 これらはもし順列だと4通りだけど、組み合わせの場合は1通りになる。 あれっ、ということは単純に7つ中から4個を選ぶ組み合わせでいい? 7つの異なる文字から4つの異なる文字を選ぶ組み合わせ  ですよね。 だから重複組み合わせでもないと。 7C4=35通り 答案1B. 積の法則でもできそうなのでやってみると まず7つ頂点に対して、そのおのおのについて、残りの6頂点を結ぶ場合の数は6通り、 その6つ頂点に対して、さらにおのおのについて、残りの5頂点を結ぶ場合の数は5通り、 その5つ頂点に対して、さらにおのおのについて、残りの4頂点を結ぶ場合の数は4通り、 1頂点・・7通り 2頂点・・6通り 3頂点・・5通り 4頂点・・4通り 7×6×5×4=840通り あれっ、順列になっちゃった。 どこか、過程に間違いがありますか。 答案2A. 対角線は添付データを書いているときに規則を見つけました。 あれ、対角線の定義もあいまいです。 辺はたしか対角線ではないですよね。 そうすると、1頂点から4本の対角線が出ている。 規則はある頂点の両隣は除く。辺だから。 すると7頂点ABCDEFGの中から4頂点を選ぶ選び方でいいんですか。 7C4=35通り 何か見落としがありそう。 答案2B. 例を挙げてみると 頂点Aと頂点CDEFを結ぶ4つの対角線。 Aに対して4本 Bに対して4本 Cに対して4本 ・ Gに対して4本 あれっ、単純に7頂点×4本=28本 でいいんですか。