• ベストアンサー

既約多項式の証明

p:素数 Zp=Z/(p)とする. 多項式f(x)=a0+a1x+・・adx^d∈Z[x]に対して、 f ̄(x)=a0 ̄+a1 ̄x+・・ad ̄x^d∈Zp[x]として、(a ̄∈Zpは整数aの剰余項) 最高次の項の係数がpで割れない原始多項式f(x)∈Z[x]について、f ̄(x)がZp[x]の既約元であれば、f(x)はZ[x]の既約元である ということを示したいのですが、f(x)が既約元でなくf=ghとおいて示そうとしてるのですが、ごちゃごちゃになっていまいちできません。どのような解法が適切でしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

方針は良いと思います。f ̄が既約としてあるのでg ̄かh ̄のどちらかが1でたとえばh ̄を1としましょう。そうするともとのhは定数項以外すべてpの倍数を係数に持つのでfの最高次係数はpの倍数、これはfの仮定と矛盾です。

jon-td-deen
質問者

お礼

h ̄の元が0ってことはpで割り切れるということですね。 ありがとうございました。

関連するQ&A

  • 原始多項式の証明

    原始多項式の証明 すみませんこの問題がどうしてもわかりません。だれか教えていただけないでしょうか? x^4+x+1(この式はFp[x]に含まれる、p=2)はFp上の4次原始多項式であることを示せ。 まず、既約多項式であることを証明して、原始多項式であることを証明するのだと思うのですが・・・ どうかお願いします。

  • 多項式が既約である事の証明

    多項式、例えばf(x) = x^8 + x^4 + x^3 + x + 1が(Z/2Z)[x] で 既約である事はどうやって証明したらよいのでしょうか? 二次の多項式であれば証明できるんですが・・・。 どなたか教えて下さい。

  • 既約多項式

    f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X)がQ[X]の既約多項式であることの示し方を教えて頂きたいです。

  • 既約多項式

    f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X+1)の計算が分かりません。また、f(X)はQ[X]の既約多項式であることの示し方を教えて頂きたいです。

  • 既約多項式の問題

    もし関数f(x)がf(x^2)の因数なら多項式f(x)はfspであると呼びます。また、fspであるf(x)の因数が、fspである低次の関数によって表すことができない時、f(x)をfsp既約関数と呼びます。たとえば、一次のfsp既約関数は、mxとm(x-1)だけです(m は任意のゼロではない実数の定数)。二次の場合、fsp既約関数はx^2+x+1だけです。 (1)3次や4次のfsp既約関数は存在するでしょうか?そういった関数の中で、整数のみを係数とするようなものはあるでしょうか? (2)fspの関数や、fsp既約関数の性質についてなにか一般化できるでしょうか?

  • 原始多項式について

    一意分解環Aとその多項式環A[x]∋f(x)について、次の(1), (2)は同値であることを証明したいのですが、 (1)f(x)は原始多項式である (2)任意の素元p∈Aに対して、f(x)をpを法として考えた多項式f'(x)∈(A/(p))[x]は零でない (2)のf(x)をpを法として考えた多項式とは a0, b0, …, an, bn∈Aを用いて f'(x)=(a0/pb0)x^n+…+(an-1/pbn-1)x+(an/pbn) と表せる事(だと思う、、)で、 原始多項式とは f(x)=a0x^n+…+an-1x+anについて、a0, …,anの最大公約元が可逆元であることなので、 (2)⇒(1)はf'(x)=(a0/pb0)x^n+…+(an-1/pbn-1)x+(an/pbn)が零でなければ、a0, …,anの最大公約元が可逆元となるように示して行けば良いと思うのですが さっぱり分かりません。 (1)⇔(2)の証明をご教授頂けると助かります。 よろしくお願いいたします。

  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。

  • 体 変数多項式環 既約多項式

    体 K 上の 1 変数多項式環を K[X] とし,X^3- 2 によって生成される K[X] のイデアルを I とし、 剰余環 A = K[X]/I について。 K が有理数体 Q であるとき,X^3- 2 は Q[X] の既約多項式であることとA が体であることをどのように示していけばいいでしょうか。

  • 原始多項式について

    原始多項式について下記の問題と証明が合っているか確認したいのですが、 まず、原始多項式f(x)はf(x)=a0x^n+…+an-1x +anにおいてa0, …, an-1, anの最大公約元が可逆元の時を言います。 [問題] 一意分解環Aとその商体Kに対して自然な準同型π: A→K、a→a/1を定め F(x)=π(a0)x^n+…+π(an-1)x+π(an) f(x)=a0x^n+…+an-1x+an と置いた時、F(x), f(x)は原始多項式 [証明] Kは体なのでπ(ai)∈Kは可逆元でその最大公約元も可逆元。従ってF(x)は原始多項式。 またπ(ai)の逆元π(ai)^-1についてπ(ai)^-1=π(ai^-1) より逆元ai^-1がありf(x)も原始多項式である。 以上、考え方が合っているかご教授頂けますと幸いです。よろしくお願いいたします。

  • 代数の既約多項式の問題です。

    代数の既約多項式の問題です。 a_n(x^n)+a_n-1(x^n-1)~+a_2(x^2)+a_1(x)+a_0=0 (a_0,a_1,・・・a_n∈Q:有理数) が既約とする。この方程式の解がn次未満のQ係数多項式の解とはならない事を示せ。 既約多項式:これ以上約せない多項式 わかる方いましたらよろしくお願いいたします。