• ベストアンサー

不等式について

「C=1/2(PQ+1)があり、 PQ/2-(PQ-2)/2P^n>C-1=(PQ-1)/2,・・・(1) P^(n-1)>=Qを満たすとき(1)となる。」 という文章で P^(n-1)>=Qという条件は(1)を解いたときにでる結果なのでしょうか??そして、(1)を解いても P^(n-1)>=Qになりません>< 解けますか><アドバイスください><

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

確かに、(1) を解いても P^(n-1) ≧ Q にはなりませんね。 おそらく P>0 という条件があると思いますので、その前提で回答します。 実際に解いてみると、 PQ/2 - (PQ - 2)/(2P^n) > (PQ - 1)/2 …(1) - (PQ - 2)/(2P^n) > - 1/2 (PQ - 2)/(2P^n) < 1/2 PQ - 2 < P^n Q - 2/P < P^(n-1) Q < P^(n-1) + 2/P …(2) となり、解いた結果は P^(n-1) ≧ Q にはなりません。 つまり、「(1) ならば P^(n-1) ≧ Q」は一般には成り立ちません。 ただ、逆の「P^(n-1) ≧ Q ならば (1)」は成り立ちます。 P^(n-1) ≧ Q ならば、Q ≦ P^(n-1) であり、 2/P > 0 ですから、(2) が成り立ちます。 そして、(2) が成り立つならば、上記の逆順の変形により、(1) が成り立ちます。 というわけで、 「P^(n-1) ≧ Q」は (1) を解いたときにでる結果ではない しかし、「P^(n-1) ≧ Q を満たすとき (1) となる」は正しい ということになります。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 不等式の質問!

    こんにちは! C=1/2(PQ+1)を使い、 PQ/2-(PQ-2)/2P^n>C-1としたいのですが、 C-1の形にすることができません。できますよね?><

  • p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq

    p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq)になりますか? nがpともqとも互いに素であるときは、 Fermatの小定理を使えばn^{(p-1)(q-1)}≡1 (mod pq) が言えるので、標記の命題は言えると思うのですが pまたはqのいずれか一方がnと互いに素でないとき n^{(p-1)(q-1)}≡1 (mod pq)は言えないものの n^{(p-1)(q-1)+1}≡n (mod pq)は言えてしまっているように思えます (私がやったケースはp=3,q=11の場合です)。 これは正しいのでしょうか? 正しいとしたら何故ですか?

  • 数学Iの知識を使う問題のようです

    塾で出た問題です。 始めて見る問題で、新高一の自分には難しすぎます・・・ この問題の類題のテストを近いうちに実施するようなので、できれば早いお答えをお願いします。 (問題) 完全数Nと素数p,qがある(但しp≠qである) 尚、完全数Nとは、Nを除くNの約数の和がNと等しい数の事である ex)6の6を除く約数の和は1+2+3=6 よって、6は完全数と言える (1)N=pqの形をとれるNを全て求めろ (2)N=p^qの形をとれるNを全て求めろ(p^はpの二乗です) 僕は、「N=pqなら1+p+q=pqなので、pq-p-q-1=0の形にして因数分解しよう。」と考えたのですが、p(q-1)-(q+1)=0の形にしかならず、そこで手づまってしまいました。 (2)も同様に行き詰りました。 やはり、因数分解はしないのでしょうか・・・? 因みに、完全数の知識があれば数学Iまでで習う知識で解けるようです。 答えだけでなく、考え方、途中式等もお願いします。

  • 積分(回転体)の問題です。

    xy平面上の曲線C:y=1/x(x>0)を考える。0<p<qのとき、C上の2点P(p,1/p)、Q(q,1/q)を通る直線とCで囲まれる図形の面積をSとし、その図形をx軸の周りに1回転してできる回転体の体積をV とする。 第1問 r=q/pとおくとき、SおよびVの値をp、rを用いて表せ。 第2問 自然数nに対して、p=3^(n-1)、q=3^nのときのVの値をV[n]とおく。無限級数Σ[n=1..∞]V[n]の和を求めよ。 第1問のSに関しては直線PQをy={(-1)/(pq)}x+1/p+1/qと求めて曲線Cで引いてq~p区間を積分しS=(1-r^2)/(2r)+log(r)となりました。あってるかどうかわかりませんが… V以降でわからなくなってしまいました。 解答よろしくお願いします。

  • 数学A二項定理

    Nを自然数として、xy平面上の点A(n,n)と原点Oを結ぶ線分を対角線とする正方形の周上または内部に、座標が整数であるような異なる2点P,Qをとるとき、次の問いに答えよ。(1)線分PQのとり方は何通りあるか。(2)線分PQが座標軸上にあるか、または座標軸に平行となるとり方は何通りあるか。(3)線分PQの長さが(ルート2)となるようなとり方は何通りあるか。(4)線分PQが対角線OAと共有点をもつようなとり方は何通りあるか。 答え;(1)(n+1)^2C2=n(n+1)^2(n+2) /2とおり  (2)2×n+1C2×(n+1)=n(n+1)^2とおり(3)2n^2とおり (4)n(n+1)(n+2)(n+3)/4とおり

  • フーリエ変換です. よろしくお願いいたします.

    フーリエ変換です. 周期T=2πのf(t)=1-t/π (0≦t≦2π) があるとき, tn=nT/N (0≦n≦N-1), ωp=2πp/T (0≦p≦N-1)を用いて f(tn)=Σ[p=0~N-1] {X(ωp)e^(iωp・tn)} X(ωp)=1/NΣ[q=0~N-1]{f(tq)e^(-iωp・tq)} このとき, X(ωp)を求めよ. という問題で, X(ωp)=1/NΣ[q=0~N-1]{f(tq)e^(-iωp・tq)} から X(ωp)=1/NΣ[q=0~N-1]{(1-q/π)e^(-iωp・tq)} =1/NΣ[q=0~N-1]{(1-q/π)e^(-i2πpq/N)} =∫[q=0~N-1]{(1-q/π)e^(-i2πpq/N)} と式変形をしてX(ωp)を出そうとしたのですが,うまくいきませんでした. 解き方が間違っているのでしょうか. よろしくお願いいたいします.

  • カードトリック問題についての文章について

    こんにちは。何回も質問してすみません>< カードトリックについて、次のような内容であることが今までの質問でわかりました。 「21 枚のカードを、絵が見えるように上にして、三枚ずつ七行に並べていく。七行・三列の行列にする。そして、観客に一枚を選ばせ、三列のうちのどの列なのか言わせる。カードは手渡さない。指示された列 が真ん中になるよう各列のカードを集めたあと、また繰り返す。これを3ラウンド繰り返せば、観客の選んだ札を言い当てられる。さらに、一般化して、P*Q 枚の札を P 列(columns)、Q 行(rows)に配列した場合(上の例では、P=3 and Q=7)を考える。P, Q が奇数の場合、P=2p+1 および Q=2q+1 (p>=1 and q>=1)とする。(上の例では、p=1 and q=3)重ねたカードの上から順番に 1, 2, 3, ... と番号付けすると、真ん中のカードの上下には (P*Q-1)/2 枚ずつあり(上の例では10枚ずつ)真ん中のカードの番号(C)は C = (P*Q+1)/2 = p*Q+q+1 = q*P+p+1 である。(上の例では C=11)このトリックを第 n ラウンドした後、選ばれたカードが重ねたカードの上から X(n) 番目だったとする。次の(n+1)ラウンドでそれが第 r 行に現れるとすれば、その r は X(n)/P 以上の整数で最小の値のものである。m>=Y の最小整数を <Y> と書けば、選ばれたカードが真ん中の列になるようカードを重ねなおしたあと、選ばれた札の番号 X(n+1) は次のような関係を満たす。  X(n+1) = p*Q+<X(n)/P> 問題の対称性から、選ばれたカードが重ねたカードの上半分にあるだけに注目すればよい。そこで 1=<X(0)=<C と仮定する。上記の帰納法により、すべての n について X(n)=<C である。そうすると、  X(n+1) = p*Q+<X(n)/P> = <p*Q+<C/P> = p*Q+<(q*P+p+1)/P> = p*Q+q+1=C 同様にして、Xn=C のとき X(n+1) = C である。また X(1)>p*Q の場合は、  pO<X(1)<X(2)<....<X(N-1)<X(N)=C=X(N+1)=X(N+2)=....(不動点 !) となる整数 N があることを示せる。(上の例では、第3ラウンドでカードを行列に配列したとき、選ばれたカードは必ず第4行にあり、観客にどの列にあるかを指示させたら、どのカードかがわかる。もう一度カードを重ねて行列に配りなおせば、選ばれたカードはど真ん中にくる。さらに繰り返すと、いつもど真ん中にくる。)」という内容でした。この続きに、下のような文章があったのですが、どのようにつながっているのかが、わかりません(泣) わからない文章は、 [The number of rounds] In the case of the trick as first described, P=3,Q=7 and C=11. In this case, X1>=8, X2>=7+<8/3>=10, 11>=X3=7+<10/3>=11. Thus (as stated in the first section) the chosen card is in the central position after three rounds.We turn now to discuss the number of rounds needed for the pack of general size. First, as X1>pQ we deduce that C>=X2>=pQ+<(pQ+1)/P>. Now P>=Q implies that pQ>=qP which, in turn, implies that C>=X2>=pQ+<(qP+1)/P>=pQ+q+1=C. Thus if P>=Q (and, in particular, if P=Q) then the chosen card is already in the central position after the second round regardless of the size of P and Q. A little thought should now show that, in retrospect, this is rather obviously so. The situation when Q>P is more complicated, and we shall show that the chosen card is always in the cantral position by the n th round provided that n>=1+logQ/logP.・・・(2) We shall also given an example to show that in some cases this lower bound is indeed the smallest n for which the chosen card is centrally placed, so the inequality (2) cannot be improved upon. If P>=Q, then (2) simply says that Xn=C as soon as n=2, a fact we have already observed above. Note also that (2) shows that, for a fixed P, the number of rounds needed tends to +∞ as Q does. We begin with the example to show that (2) cannot be improved upon. Example Consider the trick with P=3, and Q=3^N, so that C=2/1(3^(N+1)+1), and let the selected card be the first in the psck. Then X1=pQ+<1/3>=3^N+1 X2=3^N+<3/1(3^N+1)>=3^N+3^(N-1)+1,                    ・                    ・ です。 質問1:いきなりlogがでできているところで、何でか? 質問2:∞の文章の意味 特にこの2つが疑問です>< アドバイスお願いします><

  • 数A 整数の性質

    kを2以上の整数とする。2からkまでの整数のうち、kと互いに素であるものの個数をNとする。 例えば、k=5とすると2から5までの整数のうち、5と互いに素であるものは2、3、4で あるから、N=3である。 (1)k=7のとき、Nを求めよ。また、k=14のとき、Nを求めよ。 (2)pを7でない素数とする。k=7pのとき、Nを求めよ。 (3)p、qはともに素数であり、p<qとする。k=pqのとき、N=11を満たすp、qの組(p、q)をすべて      求めよ。 この問題があまり分かりません。解答・解説を見ても分かりませんでした。 分かる方がいれば、解説まで教えて下さい。 宜しくお願いします。

  • 1.自然数nの正の約数において、1を含み、nを含まない約数の総和がnに

    1.自然数nの正の約数において、1を含み、nを含まない約数の総和がnに等しいとき、nを完全数という。 (1)20および28は完全数かどうか調べよ。 (2)p,qを互いに異なる素数として、n=pqとおく。nが完全数のとき、pをqを用いて表せ。  さらに、n=pqの形の完全数nを求めよ。 (3)pを素数として、n=p4乗とおく。このとき、どのような素数pに対してもnは完全数とはならないことを証明せよ。 2.次の3直線l,m,nで囲まれる三角形の周および内部の領域をDとおく。    l:3x-4y+1=0 m:x-4y+3=0 n:5x+4y-33=0 (1) lとmの交点をA,mとnの交点をB,nとlの交点をCとおくとき、A,B,Cの座標を求めよ。 (2) 点(x,y)が領域D内の点であるとき、(x-3)2乗+(y-1)2乗の最大値と最小値を求めよ。   また、最大値および最小値を与える点(x,y)も求めよ。 (3) 領域D内の点Pを中心とする半径1の円がある。点Pが領域D内のすべてを動くとき、円が通過する部分の面積を求めよ。 上記2問、どうしても解けません。 申し訳ありませんが、お助け下さい。

  • 自然数m、n。十分条件の証明

    趣味で、久々に高校の時の数学の問題集を解いてみています。 その中で分からない証明があったので、詳しい方教えてください。 [問い] ----------------------------------------------------- 自然数m、nに関する条件p、qがある。pはqであるための必要 条件か、十分条件か、必要十分条件か、またはいずれでもないか? p: m<n  q: m^2 ≦n^2 ------------------------------------------------------------ 答えは十分条件です。(必要条件はm=nの時が明らかに反例) その証明が以下のようになっています。 m<nから m-n<0 このとき、 m^2-n^2=(m+n)(m-n)<0  よって m^2 <n^2 ゆえに m^2 ≦n^2(*) したがってp⇒qは成り立つ。(十分条件) 分からないのは(*)の部分です。なぜ「ゆえに」と言えるのでしょう。 m<nなので、等号はつかないように思うのですが……。 なんだか、すごく単純な思い違いをしているような気もして冷や汗ものですが……良かったら教えてください。よろしくお願いします。