フビニの定理について

このQ&Aのポイント
  • フビニの定理についての要約文1
  • フビニの定理についての要約文2
  • フビニの定理についての要約文3
回答を見る
  • ベストアンサー

フビニの定理について

フビニの定理 もし、f(x,y)が可積分ならば、 ∫f(x,y)dx,∫f(x,y)dy がa.e.で存在していて、ともに可積分であり、等式 ∫f(x,y)dxdy=∫[∫f(x,y)dy]dx=∫[∫f(x,y)dx]dy が成り立つ。 それで、 f(x,y)が可積分でないときは、上式の第2式と第3式が存在しても、 その値が異なる場合がある例として、  1 1 ∫[∫(x^2-y^2)/(x^2+y^2)^2 dy]dx=π/4   0 0  1 1 ∫[∫(x^2-y^2)/(x^2+y^2)^2 dx]dy=-π/4   0 0 となるそうなのですが、この積分結果が導出できなくて困っています。 部分分数展開やら試してみたのですが、どうもうまくいきません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

有名問題なのでズルして結果を示すと ∫(0~1)[∫(0~1)(x^2-y^2)/(x^2+y^2)^2 dy]dx =∫(0~1){[y/(x^2+y^2)](積分にy=0,1を代入)}dx =∫(0~1){1/(x^2+1)}dx =π/4 同様に ∫(0~1)[∫(0~1)(x^2-y^2)/(x^2+y^2)^2 dx]dy =∫(0~1){[-x/(x^2+y^2)](積分にx=0,1を代入)}dy  =∫(0~1){-1/(y^2+1)}dy =-π/4 のようですね.

msndance
質問者

お礼

第1式から第2式が、しんどいですね。 2式から1式は検算で出せたのですが、 やはり思いつくしかないのでしょうか。 ずっと詰まってましたが、納得することができました。 ありがとうございました。

関連するQ&A

  • Greenの定理

    原点を中心とする半径1の円に反時計回りに向き付けを与えた閉曲線をcとするとき、次の線積分を求めよ。 ∫c (x^2+y^2)dx + xydy という問題なのですが、Greenの定理を使うと、 ∬ dxy/dx + d(x^2+y^2)/dy =∬ y-2y dxdy =-∬y dxdy となるのですが、この先の答えの出し方が分かりません。どなたか教えてください。お願いします。

  • 2重積分

    2重積分の質問です。 2重積分の計算で D={(x,y)|a≦x≦b,ψ1(x)≦y≦ψ2(x)}のとき ∬f(x,y)dxdy=∫[a→b]{∫[ψ1(x)→ψ2(x)] f(x,y)dy}dxですが ∬f(x,y)dxdy=∫[ψ1(x)→ψ2(x)]{∫[a→b]f(x,y)dx}dyでも可能でしょうか?? よろしくお願いします。

  • 二重積分の解法

    次の問題の解き方に悩んでいます。 ∫∫ (x^2 + y^2) dxdy (ただし、 x^2 + y^2 ≦ 1) この式を自分なりに下記のように解いてみました。 dyは-(1-x^2)^1/2 ~ (1-x^2)^1/2、dxは-1~1の積分範囲としました。 ∫ dx ∫ dy = ∫ 2(1-x^2)^1/2 dx = 2[ 1/2 ( x(1-x^2)^1/2 + arcsin x )] (ここでdxなので[ ]内の積分範囲-1~1) = π/2 - (-π/2) = π としてみました。しかし、問題集では答えがπ/2となっています(解法は載っていない)。 上の解法のどこ(積分範囲?)が誤っているのでしょうか?

  • ストークスの定理の証明

    ストークスの定理より,∂q1/∂y=∂q2/∂x→∫r(q1dx+q2dy)=0(r:roop)と表されるとき,F(x,y)=∫r dFの式より,∂F/∂y=q2であることを確認せよ。 という問題があったのですが教えていただけないでしょうか?

  • 2重積分の問題教えてください!

    Dを()内の不等式で表される領域とするとき、次の2重積分の値を求めよ。(領域Dも図示せよ。) ∫∫[ ,D]sin(2x+y)dxdy (0≦x≦π/2, x≦y≦2x) 2重積分の問題なのですがなかなか答えにたどり着けずにいます。誰か教えていただけないでしょうか? ∫∫[ ,D]sin(2x+y)dxdy =∫[π/2,0]{∫[2x,x]sin(2x+y)dy}dx ここからが進みません。宜しくお願いいたします。

  • 重積分の順序の交換

    非有界な関数f(x,y)を重積分(0≦x≦1,0≦y≦1)することを考えます。 具体的にはf(x,y)=(x-y)/(x+y)^3です。 この時、xで先に積分するか、yで先に積分するかで値が変わることはありますか? 僕が行った計算では、変数変換(x,z)=(x,x+y)とすると、ヤコビアンは1でdxdy=dxdzで、 ∫_0^1 dx ∫_0^1 f(x,y) dy =∫_0^1 dx ∫_x^{x+1} (2x-z)/(z^3) dz =∫_0^1 dx 1/(x+1)^2 = 1/2 zの積分はxを定数として計算しています。 ここで、逆の順序で積分すると、xとyの変数を入れ替えたものは等しいので、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy =∫_0^1 dy ∫_0^1 (y-x)/(x+y)^3 dx = - ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx =1/2 よって、 ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx = -1/2 だと思うのです。 また、直感的には、交代式を直線x=yに対称な領域で積分するなら、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy = 0 が正しいとも思えます。 どうかこの辺の事情をお教えください。

  • 微分の計算(記号の使い方)

    f(x)の逆関数をg(x)とする。f(1)=2、f‘(1)=2、f‘‘(1)=3のとき、g‘‘(2)の値をもとめよ。 y=g(x)とすると、f(x)はg(x)の逆関数だから、x=f(y)ゆえに、dx/dy=f‘(y)。 よって、g‘(x)=dy/dx=1/f`(y) g‘‘(x)=(d/dx)(g`(x))=(d/dy)(1/f`(y))(dy/dx) (疑問) 私はg‘‘(x)=(d/dx)(g`(x))=(d/dy)(1/f`(y))(dy/dx)の部分で、(d/dy)(1/f`(y))(dy/dx)=(d/dy)(1/(f`(y))^2)としてしまいました。 (d/dyをdy/dxにも適用してしまった)調べたところ、d/dyは直後の関数のみに適用するそうです。そうすると、(d/dy)(1/f`(y))(dy/dx)の変形のところで、私は分数のように考えてこの式へ変形したのですが、dy/dxは1/f`(y)の直後に書かなくてはならないですよね?(分数といっても交換して(d/dy)(dy/dx)(1/f`(y))のようにしてはダメ。) 合成関数の微分法で、分数のように変形する場合は直後に付け加えていくということでしょうか?

  • 積分

    ナイフエッジ回折の式の導出で、 integral_-∞^∞ dy*integral_-h^∞ e^-j*k*(x^2+y^2)*(d_1+d_2)/2*d_1*d_2 dx という積分が解けません。 2重積分として座標変換して(x^2+y^2)=r^2,dxdy=rdrdθとすればいいと思うのですが、そのように変換しても、その後どうしたらいいかわかりません。 複雑なものになると思うので、解き方のわかる書籍の紹介でもいいので教えてください。お願いします。

  • 線積分の問題

    x^(2/3)+y^(2/3)=a^(2/3)にそって線積分 ∫c(x^2・ycosx+2xysinx-y^2・e^2)dx+(x^2・sinx-2ye^x)dyを計算せよ。 グリーンの定理を用いるとよい。 という問題です。 グリーンの定理を用いると∬D d{(x^2・ycosx+2xysinx-y^2・e^2)dx+(x^2・sinx-2ye^x)dy}dxdyのように式変形できると思うのですがここから先どのように考えてゆけばよいでしょうか? 外微分を用いて計算してゆくのでしょうか? 教科書に載っておらず、板書は写したもののグリーンの定理さえあまり理解できていません。 ネットでも調べてみたのですが、イマイチといった感じです。 外微分はなんとか調べて理解できました。 助けていただけると幸いです。 よろしくお願いします。

  • 広義積分について

    大学の微分積分のテストが追試になってしまい勉強中なのですが、広義積分が良くわからなくって困ってます。どなたかコツみたいなものを教えていただけないでしょうか?(正方形領域や円領域に簡単に近似できるものはわかります。) 例えば、次のような問題がよくわかりません。 ・∬e^(y/x) dxdy D={(x,y)|0<x≦1,0≦y≦x^2} ・f(x,y)=2(x-y)/(x+y+a)^3,(a>0)に対して次の値を求めよ。 ∫dx∫f(x,y)dy , ∫dy∫f(x,y)dx (積分範囲はすべて0~∞) どなたか解き方のヒントでもいいのでください。よろしくお願いします。