• 締切済み

分数の積分について

∫[0→1]∫[0→1] (x-y)/(x+y)^2 dy dx を解こうと考えているのですが、 この積分はx=r*cosθ y=r*sinθと置換し、ヤコビアンrをかけて積分すればよいのでしょうか? それとも、(x-y)/(x+y)^2をそのまま(x-y)*(x+y)^(-2)として解けばよいのでしょうか? アドバイスよろしくおねがいします。

みんなの回答

  • Mr_Holland
  • ベストアンサー率56% (890/1576)
回答No.2

 #1です。  お礼を拝見しました。 >x/(x+y)^2-y/(x+y)^2がx/t^(-2)-(t-x)/t^(-2)に置き換わるということでいいんですよね? そうです。

thinsulate
質問者

お礼

ありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。
  • Mr_Holland
  • ベストアンサー率56% (890/1576)
回答No.1

 この重積分はxとyの対称性について考えれば、答えはすぐに「0」だということが分かります。   ∫[0→1]∫[0→1] (x-y)/(x+y)^2 dy dx  =∫[0→1]∫[0→1] {x/(x+y)^2-y/(x+y)^2} dy dx  =∫[0→1]∫[0→1] x/(x+y)^2 dy dx -∫[0→1]∫[0→1]y/(x+y)^2 dy dx  =∫[0→1]∫[0→1] x/(x+y)^2 dy dx -∫[0→1]∫[0→1]x/(y+x)^2 dx dy  ・・・・第2項のxとyを置き換える。  =∫[0→1]∫[0→1] x/(x+y)^2 dy dx -∫[0→1]∫[0→1] x/(x+y)^2 dy dx  ・・・・xとyは独立なので。  =0  また、対称性を利用せず解く場合は、x+y=tと置いて、被積分関数をx/t^(-2)-(t-x)/t^(-2)に変形して、log(x)の不定積分x・log(x)-xを利用すればよいでしょう。

thinsulate
質問者

お礼

ありがとうございます。 対象性を利用せずに解く場合x+y=tと置いてますが、 x/(x+y)^2-y/(x+y)^2が x/t^(-2)-(t-x)/t^(-2)に置き換わるということでいいんですよね?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 積分

    ∫ sin(x)/sin(x/2) dx の積分ってどうやるんですか x/2=yとおいて ∫ sin(2y)/sin(y) 2dy からsin(2y)=2sin(y)cos(y)を使って 4∫ cos(y) dy では変ですよね?

  • 広義積分

    広義積分の問題なのですが,変数変換をすると,積分範囲がどうしても0→0になってしまいます…。 問題は D={(x,y)∈R^2|ε^2≦x^2+y^2≦1} lim(ε→0) ∬{(x^2-y^2)/(x^4+y^4})dxdy という問題なのですが,これを x=rcosθ,y=rsinθ,ヤコビアン=r D'={(r,θ)∈R^2|ε≦r≦1,0≦θ≦2π} ∫(1/r)dr∫{(cos^2θ-sin^2θ)/(cos^4θ+sin^4θ)}dθ =∫(1/r)dr∫{cos2θ/((cos^2θ+sin^2θ)^2-2cos^2θsin^2θ)}dθ =∫(1/r)dr∫{cos2θ/(1-(sin2θ)^2/2)}dθ =∫(1/r)dr∫{2cos2θ/(2-(sin2θ)^2)}dθ ここでt=sin2θと変数変換しようとしたのですが, そうすると積分範囲が0→0になってしまします。。。 どこか間違っているのでしょうか?? どなたか解説お願いします。

  • 初歩の三角関数積分について

    高校数学をやり直している者です。 y=sin^2(x)の積分は、倍角の公式を用いて、 sin^2(x)=(1-cos(2x))/2として進めるのが定番となっていますが、 y=t^2, t=sin(x)とした置換積分の手法では、正答と結果が違います。 y=t^2, t=sin(x) Y=∫t^2 dx, dx=(1/cos(x))dt Y=(1/cos(x))∫t^2 dt Y=(1/cos(x))*(t^3/3) Y=(1/cos(x))*(sin^3(x)/3) この置換積分のどこがいけないのでしょうか?

  • 極座標を利用した2重積分

    ガウス積分の証明に、直交座標を極座標に変換する手法が紹介されています。 x=r・sinΘ、 y=r/cosΘまでは理解できるのですが、なぜ以下のようになるか理解できません。 dx・dy=r・dr・dΘ dx=dr、dy=r・dΘなら、上式は成り立ちますが、そうだとするとなぜ、dx=dr、dy=r・dΘなのでしょうか?

  • dy/dx・dxは置換積分を使ってdy?

    次の微分方程式を解け 2yy'=1 とありました。解答は -------------------------------- 2y・dy/dx=1の両辺をxで微分して ∫2y (dy/dx) dx=∫dx 置換積分法により ∫2y dy=∫dx ゆえに y^2=x+C (Cは任意定数) -------------------------------- となっています。ここで疑問に思ったのが ”置換積分法により”という箇所です。 これはdy/dx・dxを”約分して”dyにしてはならず、 ”置換積分法により”dyにしなくてはならない、 ということが言いたいのだと解釈しました。 疑問1. そこで、ここにおける”置換積分”とは具体的には どのような作業を指すのでしょうか? 疑問2. 以下は全て同じことを表現したいと意図している のですが、誤解を招くことはないでしょうか? 2y・dy/dx・dx    2y (dy/dx)・dx   2y dy/dx dx 2ydy/dx dx 2y*dy/dx*dx 2yとdyの間に半角スペースを入れた方がよいか ・と*と半角スペースどれが妥当か dy/dxは()でくくるべきか などなどです。

  • 重積分と積分範囲について

    回答者の皆様、いつもお世話になります。 以下の問題に関して自信がもてませんので、添削していただきたく思います。 ∬ 1/√(x-y^2) dxdy 積分範囲 0≦x≦1 x≧y^2 先ず積分順序ですがyから処理しようとしますと、Arcsinとか虚数とか出てくる気がしますので、xに着目します。 y^2≦x≦1 x≧y^2 ⇒ |√x|≧y ∴ ‐√x≦y≦√x 0≦x≦1より、‐1≦y≦1 以上より、積分範囲は ‐1≦y≦1 かつ y^2≦x≦1  ∫[y^2 1] 1/√(x-y^2) dx について ∫[y^2 1] 1/√(x-y^2) dx , x-y^2=tとして、dt=dx ∫[0 1-y^2] 1/√(t) dt = [ 2√t ][0 1-y^2] =2√(1-y^2)-0=2√(1-y^2) 以上より∫[-1 1] 2√(1-y^2) dy 、y=sinθ として dy=cosθ dθ =∫[3π/2 π/2] 2cosθ√(cos^2θ) =[2cos^3θ][3π/2 π/2] =0 と、0になってしまいました。 考え方は合っているのでしょうか?ご指導願います。

  • 積分の問題

    定積分 ∫(∫cos(x/y)dy)dx yの積分範囲 (2x/π)→1 xの積分範囲 0→π/2 この問題が分かりませんでした.よろしければ解き方を教えてください.

  • 三重積分 (x^2+y^2+z^2)dxdydz

    範囲はこれで与えられています。x^2/a^2+y^2/b^2+z^2/c^2<=1 x=a*r*sinθcosλ y=b*r*sinθsinλ z=c*r*cosθ とおきました。rは0から1まで、θは0からpiまで、λは0から2piまでだと思います。ヤコビアンはabcr^2sinθになります。それを普通に積分していたのですが、答えが合わなかったのです。私のやり方が正しいかどうかだけを教えてほしいです。 よろしくおねがいします

  • 不定積分

    こんばんわ。私は今大学一年生で、今学期「解析概要」という授業をとっています。 そこでの不定積分の問題なんですが、分からないものがあったのでよかったら教えてください! (1)∫arcsin(x) dx (2)∫x^2/√(a^2-x^2) dx (1)はarcsin(x)=yとしてx=sin(y)で置換して積分したら、arcsin(x)sin(arcsin(x))+cos(arcsin(x)) と出したんですが、解答はxarcsin(x)+√(1-x^2)となっていました。どうすればこういう答えになるのでしょう? (2)は部分積分で挑戦しましたが出来ませんでした。 よろしくお願いします。