• ベストアンサー

べき零のパラドックス?

「環Rにおいてx^m=0(x∈R)なるm∈Nが存在する時、xはべき零であるという。」 ここで、ふと思ったのですが xがべき零なら、xの値は0だと思います。何故なら x=x・1=x・(x・x^(-1))=x・(x・1・x^(-1)) =x・(x・(x・x^(-1))・x^(-1)) … を繰返して … =x・(x^m・x^(-m)) =x・(0・x^(-m)) =0 よって、x^m=0なら任意のn∈Nに対してx^n=0 となったのですがこれは間違ってますでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

>x^m=0なら任意のn∈Nに対してx^n=0 >となったのですがこれは間違ってますでしょうか? 間違ってます. まず,一般の環Rで Rの元xに対して,x^{-1} が存在するとは限りません 零元以外の元に対して かならず逆元が存在する環のことを「体」といいます 次に,yもRの元だとして xy=0ならばx=0またはy=0 であるという性質も一般の環では 成立しません.この性質が成り立つ環を 「整域」といいます. 反例としては 二次正方行列全体がなす環が簡単でしょう 1 0 0 0 は零行列ではないですが二乗すれば零行列なので べき零です.これの逆元もありません.

narumi000
質問者

お礼

納得です。環の定義を勘違いしておりました。

その他の回答 (1)

noname#101087
noname#101087
回答No.2

>xがべき零なら、xの値は0だと思います。何故なら .... このあとの試算で、x の逆元が現れますが、x の逆元は存在しないのではありせんか? (たとえば、べき零行列は非正則)

narumi000
質問者

お礼

納得です。環の定義を勘違いしておりました。

関連するQ&A

  • 広義一様収束関連の問題

    お世話になります。 テキストに下記の様な証明が書かれております。※箇所(2箇所)に就き、何故そう言えるのか?ご教示下さい。 ■命題:   実数上の連続関数F(x)に対して、F(x/n)→F(0)(n→∞の時)であり、この収束は実数上で広  義一様収束である。 ■証明:   任意のxに対し、x/n→0(n→∞の時)。従って、F(x/n)→F(0)・・・※(xは任意なので、x=∞   の場合、x/n→0とは云えないのではないか?   次に、この収束が[-R,R]で一様であることを示すとし、   そのためには、 任意のε>0に対して、あるNが存在して、    |x|≦Rかつn≧Nの時、|F(x/n)-F(0)|<ε・・・式(1)   が成り立つことを示せばよいとし、   x=0におけるF(x)の連続性に依り、あるδ>0がが存在して、   |x|<δの時、|F(x)ーF(0)|<ε   が成り立つので、   N>R/δ・・・※   となるようにNを取れば式(1)が成り立つ。

  • 『3^x=5を満たすxは無理数』の証明(※数IIの内容)

    『3^x=5を満たすxは無理数であることを示せ。』の証明問題を解いています。 解答での疑問があるのですが、 僕は塾には行っておらず、5連休で学校にも行けないので、利用させてもらいます。 載っている解答(一部)は以下です。 3^x=5を満たす有理数xが存在すると仮定する。 3^x=5>1であるから、x>0である。・・・(★) ゆえに、x=m/n(m、nは正の整数)と表せる。 よって、3^m=5^n これを満たすm、nの値はないから、有理数xは存在しない。 ・ ・ ・ と続いていくのですが、(★)の部分は必要でしょうか。 言い換えると、 x>0を言わずに、x=m/n(m、nは整数かつn≠0 ⇒有理数の定義)として、 証明を進めていっても、3^m=5^nを満たすm、nは存在しないのではないでしょうか。 また、これを満たす整数m、n(n≠0)があるのであれば、教えてください。 整数の範囲で考えると、m=0、n=0の場合がありますが、 これも、x=m/n=0/0となるので、xの値は存在しないですよね? 自分でもいろいろ考えてみましたが、これくらいしか出てきません・・・ わかる方いましたら、教えてください。

  • 関数0^xは0^0=1か

    極限値lim[x→+0]0^x が何故 0 になるのか。 0^1=0 は定義から明らかです。 指数法則が成り立つと仮定すると、次のことも証明できます。 m∈N について、0^m=0 n∈N について、0^(1/n)=0 m,n∈N について、0^(m/n)=0 よって、x>0 ならば 0^x=0 なので、極限値も 0 になる、と思います。 #多分、指数法則以外に方法は無い。 でも、これは 0^0=0 を意味しません。 a^(r+s)=a^r*a^s は、a=0,r>0,s<0 では意味を持たないので、 どんなに小さな r=m/n について 0^r=0 が証明されても、r>0 である限り、0^0 が計算できないからです。 つまり、関数0^x について、x=0 での値を求める方法は存在しません。 また、0^0=1 と仮定しても、x>0 について、0^x=0 が証明できるので、 0^0=1 という仮定とlim[x→+0]0^x=0 には矛盾がありません。 結局、連続性がないことは、未定義とする理由として不十分で、 「0^0 を未定義としなければならない理由は、存在しない」 この説明に問題はありますか?

  • 数学のデータの分析の問題です。教えてください

    変量xの値x1、x2、……、xnはいずれも0または1とする。0がr個、1がn-r個あるとき、x1、x2、……、xnの平均値をm(r)、分散をV(r)とおく。 (1)m(r)とV(r)を求めよ。 (2)r=0、1、……、nでのV(r)の最大値および最小値を求めよ。 答えは (1)m(r)=n-r/n、V(r)=r(n-r)/n^2 (2)最大値は、nが偶数のとき1/4、 nが奇数のとき1/4(1-1/n^2) 最小値は0   よろしくお願いします。

  • x=Ux'という形を満たすn×n直交行列Uの存在?

    こんにちは。 R^n∋x:=(x_1,x_2,…,x_n)^T≠0をn次ベクトルとすると, x=Ux' (ただし,x':=(x'_1,x'_2,…,x'_{n-m},0,…,0)^T∈R^n, 1<m<n)という形を満たす n×n直交行列Uの存在を示したいのですがどうすればいいでしょうか? なお, 「^T」は転置を表します。

  • n次元球面はn次元位相多様体であることを示せ。

    S^n={x∈R^(n+1)│∥x∥=1} はn次元位相多様体となることを示せ。 S^nはn次元球面 R^(n+1)は(n+1)次元数空間 多様体の勉強をしています。「位相空間Mがハウスドルフ空間であり、なおかつMの任意の点pについて、pを含むm次元座標近傍(U,φ)が存在するとき、Mはm次元位相多様体である」という定義はわかっているのですが、証明ができません。 R^(n+1)がハウスドルフ空間であること、ハウスドルフ空間の部分空間もまたハウスドルフ空間であるという知識は既知として使っていただいてかまいません。(はずかしながら、座標近傍の存在を示すプロセスが思いつかないのです。)

  • ディオファントス不定方程式と格子点

    「x,y平面上で、x座標とy座標がともに整数であるような点(m,n)を格子点とよぶ。 各格子点を中心として半径rの円が描かれており、傾き2/5の任意の直線は、これらの円のどれかと共有点をもつとする。 このような性質を持つ半径rの最小値を求めよ」 これの解答が、 傾き2/5の任意の直線は2x-5y-k=0(k:任意の定数)•••(1)と表される。 点(m,n)を持つための条件は |2m-5n-k|/√2²+(-5)²≦r |2m-5n-k|≦√29r•••(2) 任意のkに対して、適当なm,nをとれば(2)が成り立つようなrの最小値を求めればよい。 ここで、(2)|2m-5n-k|≦√29rにおいて、2m-5nはすべて整数値をとるから N=2m-5n•••※とおける。 すると、(2)は |N-k|≦√29r•••(3)となる。 したがって、問題の条件は次のように言い換えられる。 任意の実数kに対して、適当な整数Nをとれば |N-k|≦√29r となるような最小値を求めればよい。 ...(以下画像参照) 解説を読んでも何故1/2が出てきたのかイマイチぱっとひらめきません。 数直線上で任意の実数kに対して、点kとの距離が√29r以下であるような整数の点Nがとれるようなrの最小値を求めればよい。それ以降の過程が分かりません。

  • 発散(∞)に関して

    ネイピアの数=自然対数の底eの証明としてテーラー展開を使わずに 証明する時の途中式で疑問が沸いたのですが、 上に有界な数列{x_n}の要素の一つをある自然数mを使ってx_mとして、 ===以上はどうでも良いんですが================================ mは1<=m<nの任意の値で まず一番目にn→∞とする。 そのあとmはどんな値をとるかというと、 1<=mの任意の値です。 ・・・・(1) //ココの行が分からない。 よりm→∞としてOK (1)以下が分からないで困っています。 よく質問ばかりして、悪いと思いますが、どうかよろしくお願いします。

  • ユークリッド平面

    解答が合ってますでしょうか? また、もう少しスムーズに解答する方法はあるのでしょうか? 宜しくお願いします。 ---------------------------------------------------- Clは閉包、bは境界のことです。 「ユークリッド平面R2の部分集合族{An:n∈N}ただし、 An={1/n}×Rについて、次の問いに答えよ。 (1) Cl(∪{An:n∈N}を求めよ。 (2) b(∪{An:n∈N})を求めよ。」 ---------------------------------------------------- ユークリッド平面にx,y座標を導入して、An={(x,y):x=1/n,n∈N,y∈R}、Nは正整数、Rは実数、次のように書く。また、A=∪{An:n∈N}とする。 以下で、(x,y)は適当な点aの座標であり、xの値で場合分けして議論する。 (1) Aの閉包は、その任意の近傍がAと共有点を持つ点の全体。(2)では任意の近傍がそのようであること、(3)(4)(5)ではそうでない近傍が少なくとも一つ存在することを示す。 (1)x=1/nとなる(即ちa∈Anとなる)n∈Nが存在する場合、aはAの元なので当然Cl(A)に含まれる。 (2)x=0の場合、aの任意の近傍U(a)についてV(a;ε)⊂U(a)となるV(a;ε)が存在する。  更に1/m<εとなるm∈Nが存在し、U(a)∩Am≠φ、即ちU(a)∩A≠φ。∴a∈Cl(A)となる。 (3)x<0の場合、aの近傍V(a;ε),ε=|x/2|を考えるとV(a;ε)∩A=φ。∴a∈Cl(A)でない。 (4)x>1の場合、aの近傍V(a;ε),ε=|(x-1)/2|を考えるとV(a;ε)∩A=φ。∴a∈Cl(A)でない。 (5)1/(n+1)<x<1/nとなるなるn∈Nがある場合、aの近傍V(a;ε),ε=min{|1/n-x|,|x-1/(n+1)|}/2を考えるとV(a;ε)∩A=φ。∴a∈Cl(A)でない。 以上より、a∈Cl(A)となるのは(1)(2)だけなので、Cl(A)={(x,y):x=1/n,n∈N,y∈R}∪{(x,y):x=0,y∈R}=A∪{(0,y):y∈R}。 (2) Aの境界とは、その任意の近傍がAともAの補集合とも共有点を持つ点の全体。(1)(2)では任意の近傍がそのようであること、(3)(4)(5)ではAと共有点を持たない近傍が少なくとも一つ存在することを示す。 (1)x=1/nとなるn∈Nが存在する場合、aの任意の近傍U(a)についてV(a;ε)⊂U(a)となるV(a;ε)が存在する。  更に点P=(x-h,y),h=min{ε/2,(1/(n+1)-1/n)/2}とすると点PはAに含まれず、U(a)はA外の点Pを持つ。  a自身はAに含まれるので、aはAの境界点。 (2)x=0の場合、aの任意の近傍U(a)についてV(a;ε)⊂U(a)となるV(a;ε)が存在する。  このとき1/m<ε,m∈Nが存在し、U(a)∩Am≠φ、即ちU(a)∩A≠φ。a自身はAの補集合の元なので、aはAの境界点。 (3)x<0の場合、aの近傍V(a;ε),ε=|x/2|を考えるとV(a;ε)∩A=φ。∴a∈b(A)でない。 (4)x>1の場合、aの近傍V(a;ε),ε=|(x-1)/2|を考えるとV(a;ε)∩A=φ。∴a∈b(A)でない。 (5)1/(n+1)<x<1/nとなるなるn∈Nがある場合、aの近傍V(a;ε),ε=min{|1/n-x|,|x-1/(n+1)|}/2を考えるとV(a;ε)∩A=φ。∴a∈b(A)でない。 以上より、a∈b(A)となるのは(1)(2)だけなので、b(A)={(x,y):x=1/n,n∈N,y∈R}∪{(x,y):x=0,y∈R}=A∪{(0,y):y∈R}。

  • 高木関数に似た問題です。

    高木関数に似たものについての質問です。 実数上の関数fを f(x)=x (0≦x<1/2), 1-x (1/2≦x<1) f(x+1)=f(x) で定義します。すると,級数 Σ2^(-r)・f(4^r・x) r=1~∞の総和 はある連続関数Fに一様収束します。(これは証明済み) このとき,mは整数,nは自然数としたときに,u=(4m)4^(-n) ,v=(4m+2)4^(-n)とおくと 2^n・F(u) は偶数で 2^n・F(v) は奇数になることを示せ。 という問題です。 計算だけだとは思うのですが,細かい部分であいません。 よろしくお願いします。 2^n は2のn乗を表しています。