• ベストアンサー

(1/1)+(1/2)+…+(1/n) (n≧2)

標記の式が整数にならないことを証明しようとしています。 なんとか以下が成り立つことが示せれば証明できるということまでわかりました。 「pが素数ならp<q<2pを満たす素数qが存在する。」 これを証明するアドバイスをいただきたく存じます。もし、全く別解があればそれでも構いません。級数 (1/1)+(1/2)+…+(1/n)+… が∞であることも関係あるんでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • yoikagari
  • ベストアンサー率50% (87/171)
回答No.3

全く別の発想で 1/1+1/2+…+1/nが整数になったと仮定する。 1/1+1/2+…+1/n=A(Aは整数)とおくことにする。 1,2,・・・,nの最小公倍数Mをとる。 M/1+M/2+…+M/n=M*A・・・※ Mは偶数だから、※の右辺のM*Aは偶数 ところが、※の左辺に注目すると 2^k≦n<2^(k+1)となるような、2^kに注目すると M/1,M/2,…,M/(2^k-1),M/(2^k+1),・・・,M/nは偶数であることがわかる。 よって、M/1+M/2+…+M/{(2^k)-1}+M/{(2^k)+1}+・・・+M/nは偶数である。 M/(2^k)は奇数だから、 (M/1+M/2+…+M/{(2^k)-1}+M/{(2^k)+1}+・・・+M/n)+M/(2^k) =M/1+M/2+…+M/{(2^k)-1}+M/(2^k)+M/{(2^k)+1}+M/nは奇数となる。 以上より、※の左辺=奇数,※の右辺=偶数となって不合理。 したがって、1/1+1/2+…+1/nが整数になることはない。

Tofu-Yo
質問者

お礼

ご回答ありがとうございます!そういう方法があるんですね。ちなみにチェビシェフでも証明でき、ご教示いただいた方法でも証明できるのでこの問題を用いて逆にチェビシェフを証明できないか、・・・と模索したんですが、甘くなかったです・・・><。やっぱりできませんでした。

その他の回答 (2)

noname#24477
noname#24477
回答No.2

チェビシェフの定理と呼ばれるものです。 検索してみてください。 証明はそう易しくないと思います。 統計のほうにも同じ名前がありますが、 数論の方をみてください。

Tofu-Yo
質問者

お礼

ありがとうございます。見てみます。

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

>「pが素数ならp<q<2pを満たす素数qが存在する。」 チェビシェフの定理というらしいですね。 詳しい事は全く分かりませんが、どうやら、http://www1.ocn.ne.jp/~yoshiiz/pdf.html で証明されているみたいです。上から7番目くらいの「素数の分布に・・・」というやつです。

Tofu-Yo
質問者

お礼

ありがとうございます。pは素数でなくても成り立つんですね。証明単純じゃないですね…。読むの大変そう…。あとで時間かけて読みます。そうするとこの問題のチェビシェフを使わない別解はないかもしれませんね。別解があると逆にこの問題でチェビシェフの証明ができてしまいそうなので、そんなむずかしい証明する必要ないことになっちゃいますもね。

関連するQ&A

  • 素数の判定

    自然数Nが√Nを越えない最大の整数以下のすべての素数で割り切れなければ、Nは素数である。 この定理の証明について、わからないことがあるので質問します。本の証明では√Nを越えない最大の整数をnとし、Nがnより大きい素数qで割り切れたとすると、そのときの商をpとして、N=pqである。ここで1<p≦n<q<Nに注意すると、 pが素数ならNは素数pで割り切れるはずだし、pが合成数ならNはpの素因数で割り切れていたはずであり、いずれにしても不合理である。証明終わり。 自分は不合理を示す証明は、背理法を使っていると思ったのですが、その場合自然数Nが素数でないと仮定して証明を始めると思いました。しかし√Nを越えない最大の整数をnとし、Nがnより大きい素数qで割り切れたとすると、という仮定で始まっています。また√Nを越えない最大の整数をnとし、Nがnより大きい素数q以外では割り切れないとすると、という文章の解釈でよいのかと思いましたが、はたして正しい証明なのか疑問が残りました。最後に対偶をとってそれを背理法で証明しているのかと思いました、対偶は、Nが素数でないならば、√Nを越えない最大の整数をnとし、Nはn以下の素数いずれかで割り切れる。ですが、これを背理法で証明しようとすると、 Nはn以下の素数いずれかで割り切れない、という仮定から始まるとおもいました。本の証明の書き出しと違いました。自分で考えた方針では、本の証明とだいぶ違います。 だれか本に書かれた証明で、pで割り切れると何が不合理なのかと、自分の証明の方針のまちがいを指摘してください、お願いします。

  • 任意の整数m,nについて、m^2+n^2=p^2+q^2を満たすような

    任意の整数m,nについて、m^2+n^2=p^2+q^2を満たすような 有理数p,qの組み合わせは a^2+b^2=c^2≠0を満たす整数の組a,b,cを用いて p=(am+bn)/c, q=(an-bm)/c以外に存在しますか? 前回↓で質問した者です。 http://okwave.jp/qa/q6158436.html 上記のp,qが存在することは教えていただいたのですが 他にもあるのか気になりました。 質問の後ちょっとだけピタゴラス数の所をかじったのですが もしかしたら、上記以外には存在しないのではないでしょうか? よろしくお願いします。

  • n^2-20n+91が素数となる整数nの値・・・

    すごく、基本的な問題だと思うのですが、考え方に疑問があります。 n^2-20n+91が素数となる整数nの値を求める問題です。 参考書の解説には、題式を因数分解して=(n-7)(n-13)とし、 Pが素数のとき、素因数分解したとき1×Pにしかならないので、 n-7又はn-13のどちらかが1ということで、 n-7=±1またはn-13=±1とおいています。 自分が分からないので、「±」です。素因数分解したとき1×Pにしかならないので、 n-7=1またはn-13=1とおいてしまいました。 なぜ、±1とおけるのかが分かりません。要は-1がどのようにして条件になるのかが理解 できていません。 そういうわけでございます。考え方の質問です。

  • P(x)が任意の素数pでわれるようなnの求め方

    多項式P(x)の係数が全て整数で、最大次数の係数は1として、 任意の素数pでP(n)が割りきれるようなnは全てのpで求められるのでしょうか? (もとめられなくても任意の素数pに対してnが必ず存在することが示せればいいです) 僕が考えたのは p以下の自然数は全てpに互いに素なので、 P(x)に0以上p-1以下の自然数をおのおの代入してpで割ったときの余りが全て異なるとすると、 nは全てのpにおいて存在するとできるかなとおもったのですが、余りはこの場合異ならないのでしょうか? ことなるとしたらどう説明できますか? 回答よろしくお願いします

  • n→∞のときn^k →∞ (k>0)の証明

    高校の数3の参考書の「数列の極限」の分野に「n→∞のときn^k →∞ (k>0)」の証明が載っていたのですが、よくわからない部分があります。 kが正の整数のとき明らか。 kが正の有理数のときk=q/p (p, qは正の整数)とすると …(1) n^k=n^(q/p) =(n^q のp乗根) n^q→∞であるから(n^q のp乗根)→∞ …(2) すなわちn^k→∞ kが正の無理数のとき、 (以下略) この、(2)の部分が分かりません。 この部分は結局、(ある数列)→∞ならば、(その数列の自然数乗根)→∞ということを根拠にしてるのかなと思うのですが、それがどうして言えるのでしょうか? あと、(1)の部分ですが、この設定だと任意の正の整数kも表せるので、この場合において題意を示せれば、1行目の「kが正の整数のとき」の検討は要らないように思うのですが、それで合っているでしょうか? よろしくお願いします。

  • 『nを整数、pを素数とするとき、n^3がpの倍数ならばnもpの倍数であ

    『nを整数、pを素数とするとき、n^3がpの倍数ならばnもpの倍数である』 の「n^3が」の部分は、2乗以上ならnの何乗であっても成り立つような気がするのですが、成り立ちますか? また、何か命題を証明する際にこれを用いるときは、証明なしで使っていいものなのでしょうか? ちなみに大学入試の記述試験を想定しての質問です。 よろしくお願いします。

  • p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq

    p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq)になりますか? nがpともqとも互いに素であるときは、 Fermatの小定理を使えばn^{(p-1)(q-1)}≡1 (mod pq) が言えるので、標記の命題は言えると思うのですが pまたはqのいずれか一方がnと互いに素でないとき n^{(p-1)(q-1)}≡1 (mod pq)は言えないものの n^{(p-1)(q-1)+1}≡n (mod pq)は言えてしまっているように思えます (私がやったケースはp=3,q=11の場合です)。 これは正しいのでしょうか? 正しいとしたら何故ですか?

  • 級数ΣC_nが収束する⇒limC_n=0

    級数ΣC_nが収束する⇒limC_n=0 「級数ΣC_n (n=1→∞)が収束する⇒limC_n=0 (n→∞)である」ことを示す問題なのですが… 以下のような証明があったのですが、いまいちよくわかりません。 <証明> ΣC_nが収束するならば 任意のε>0に対して、適当な自然数Nが存在し、 n>m≧N ⇒ |c_(m+1)+c_(m+2)+…+c_n|<ε このとき、m=n-1とおくと、 n≧N ⇒ |c_n|<ε よって、lim(c_n)=0 特に、 m=n-1とおいて、どうして|c_n|<εになるのかがわかりません。 回答よろしくお願いします。

  • x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて

    x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて、 a^2+b^2=p^2を満たす互いに素なa,bは必ず存在するでしょうか? 換言しますと、奇素数pについて 「x^2+y^2=n×pとなる整数の組x,y,nが存在する」と 「a^2+b^2=p^2となる互いに素な自然数の組a,bが存在する」は同値でしょうか? 先ほど似た質問をさせていただいたのですが、 http://okwave.jp/qa/q6216192.html 私が確認してるのは「互いに素」でしたので改めて質問し直しました。 私の確認したところでは 2平方数の和がpの倍数にならないもの→3,7,11,19 2平方数の和がp倍数になり、且つp^2を満たすa,bが存在するもの→5,13,17 3^2+4^2=5^2, 5^2+12^2=13^2, 8^2+15^2=17^2

  • n^2+4が立方数となる条件

    こんばんは。 自分でふと思いついた問題なのですが…。 nを自然数としたとき、 n^2+4の立方根が整数となる条件を導きたいのですが、 どうすればいいか分かりません。 簡単なプログラムを組んで調べてみたところ、自明なn=2, 11以外は 30000以下のnでは条件を満たすnは見つかりませんでした。 命題を満たすnは2,11以外は存在しないのでしょうか? また、それが正しいとしてそれを証明するにはどうしたらいいのでしょうか?