• 締切済み

複素数の微分を利用した問題について質問

u(x , y) = ax^2 + by^2とする。w(z) = u + ivが正則となるとき、実数a , bの間に成り立つ関係を示せ。このときwの虚部すなわちuと共役な関数 v(x , y)を求め、wをzの関数として表せ。さらに、z-平面上の曲線 u(x , y) = C1とv(x , y) = C2の交点で、両者は直交することを示せ。直交しない点zがあれば求めよ。 【解答】 Cauchy-Riemannの関係式より、  u_x = v_y , u_y , -(v_x) ここで、  u_x = 2ax , u_y = 2by より、  v_y = 2ax , v_x = -2by v_yをxを固定してyで積分すると、  v = 2axy + f(x) ただし、f(x)はxについての関数。vをxで偏微分して、  v_x = 2ay + df(x)/dx = -2by  df(x)/dx = -2ay - 2by = -2(a + b)y ここで、df(x)/dx はxだけの関数、-2(a + b)yは yだけの関数なので結局両者は定数とならなければいけない。 よって、a + b = 0であることが必要。すなわち、  a = -b そして、右辺が0になるから左辺も当然0になる。 よって、f(x)も定数でなければならない。そこで、  f(x) = C(定数) とおくことにする。すると、  v(x , y) = 2axy + C (= -2bxy + C) がuと共役な関数v(x , y)となる。 ここで、z-平面状の曲線の式  u(x , y) = a(x^2 - y^2) = C1  v(x , y) = 2axy = C2 を考えられる。変形して、  y^2 = x^2 - C1/a  2yy' = 2x  y' = x/y = ±x/sqrt(x^2 - C1/a) (i)  y = (C2/2a)(1/x)  y' = -(C2/2a)(1/x^2)       (ii) (i) * (ii) = -1になれば直交するので、 ・・・? というとこまで来たのですが、どこが間違っているのでしょうか・・。 y'同士の積が-1になるようにしようとしてもできません。 よろしくお願いします。

みんなの回答

  • moumougoo
  • ベストアンサー率38% (35/90)
回答No.3

ちと違う方向から、 w(z)は正則なので、zの多項式であらわせるとすると、uが2次式のみからなるので、vも2次式。なのでw(z)=Az^2+Cという形(A,Cは複素係数)。ということでa=-b=Aかつ、v=2Axy+Cとなる。 後半は実際に出てきた関数で確かめるという作業ですが、一般的にも・・・ du=(dx∂u/∂x+dy∂u/∂y)=dC1=0 dv=(dx∂v/∂x+dy∂v/∂y)=dC2=0 の曲線を考えるので直行しているためには ベクトル(∂u/∂x,∂u/∂y)⊥(∂v/∂x,∂v/∂y)であればよいので あとは内積をとって・・・

  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.2

なんか、まわりくどいような気がしますが、もう、解答まで、たどり着いているようですね。  y' = x/y  (i)  y = (C2/2a)(1/x)  y' = -(C2/2a)(1/x^2)=-y/x  (ii) となっていますね。確かに、(i) * (ii) = -1が成り立っています。

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

> u(x , y) = a(x^2 - y^2) = C1 > v(x , y) = 2axy = C2 が直交するというのは、その交点で直交するということです。 C1,C2を決めれば、交点の座標が決まります。 従って、「任意のxで(i)*(ii)=-1」である必要はなく(そのように思われたのですよね?)、その交点で(i)*(ii)=-1であればよいのです。 交点の座標を(X,Y)などと置いて考えた方が分かりやすいでしょう。

関連するQ&A

  • 偏微分とかの問題を教えてください。

    (1) f(x,y)=sin log(x+2y)の(x,y)=(2,1)のまわりでの1次近似式と偏微分係数を求めなさい (2) f(x,y)=Arctan(x tany)の(x,y)=(a,b)のまわりでの1次近似式と偏微分係数を求めなさい (3) z=a-(x-b・e^(-y))^2、(aとbは定数)が次を満たすことを示しなさい。 2x(∂z/∂x)+(∂z/∂x)^2=2(∂z/∂y) (4) z=(1/a)(x+ay)^2+b、(a,bは定数)が次を満たすことを示しなさい (∂z/∂x)・(∂z/∂y)=2x・(∂z/∂x)+2y・(∂z/∂y) (5) Φ(ε)が任意の微分可能1変数関数であるとし、u(x,y)=Φ(2xy)とする。次が成立する事を示しなさい x・(∂u/∂x)+x・(∂u/∂y)=0 (6) Φ(ε)が任意の微分可能1変数関数とし、u=u(x,y)=(x+y)Φ(x^2-y^2)とする。 次が成立することを示しなさい y・(∂u/∂x)+x・(∂u/∂y)=u (7) Φ(ε)が任意の微分可能1変数関数であり、a,b,cが実定数であるとき、 u(x,y)=Φ(ax^2+2bxy+cy^2)とすると次が成立する事を示しなさい (bx-cy)・(∂u/∂x)-(ax+by)・(∂u/∂y)=0

  • 微分についての問題です

    関数f(x、y、z)=axy^2+byz+cz^2x^3のX=(1,2、-1)における方向微分係数の値がV=(1/√3、1/√3、1/√3)の方向において最大であり、その値が32√3となるようにa,b,cの値を定めよ。 という問題なんですが、最大について、どのようにあつかえばいいのかわかりません。答えはa=11、b=12、c=-4です。

  • 偏微分を用いた合成関数の証明問題

    次のことを証明せよ。 Y(∂Z/∂X)=(1/2)(∂Z/∂Y)のとき、ZはX+Y^2だけの関数である。 という問題で、 u=X+Y^2,v=X,Y=(u/v)^1/2とおき、 Zv=ZxXv+ZyYv =Zx+Zy*(1/2)*(u/v)^(-1/2)*(-u/v^2) =Zx-Zy*(1/2)*(1/Y)*{(X+Y^2)/X^2} と、ここまで解いたのですがこの後がわかりません。 教えてください。

  • 複素微分について

     複素関数   f(z) = u(x,y) + iv(x,y) ・・・・・ u≠0、v≠0 は、2つの実数関数 u と v の組で表されるので、実数で微分したり積分したりすることはできると思いますが、   g(z) = u(x,y) ・・・・・ v = 0   h(z) = iv(x,y) ・・・・・ u = 0 は C-R の方程式を満たさないから、h や g を複素数で微分することは不可能なのですよね?  つまり、実関数を複素関数の一部と見なしても、実関数を複素数で微分することはできないと考えてよいかということです。  あんまり当たり前のことなのか(笑)、私が持っている2つの複素関数の本にはその類いの説明はありません。

  • 微分教えてください!

    R^2\{(0,0)}における変数変換 x = u/(u^2+v^2),y = -v/(u^2+v^2)を用いて、x,yの関数f(x,y)をu,vの関数と考える (1)∂f/∂x,∂f/∂yをu,vの関数と考えて,∂f/∂u,∂f/∂v等で表せ (2)(∂^2f/∂x^2)+(∂^2f/∂y^2)は(∂^2f/∂u^2)+(∂^2f/∂v^2)のあるu,vの関数倍になることを示しその関数を求めよ さっぱりわかりません 教えてください お願いします

  • 方向微分係数の問題です

    関数f(x、y、z)=axy^2+byz+cz^2x^3のX=(1,2、-1)における方向微分係数の値がZ軸正の方向において最大であり、その値が64となるようにa,b,cの値を定めよ。 という問題なんですが、最大について、どのようにあつかえばいいのかわかりません

  • 偏微分についてです

    dz/(dt)ただし、z=f(x,y) x=cost y=sintと θz/(θu),θz/(θv)ただしz=sin(x-y) x=u^2+v^2 y=2uv の合成関数の微分を使って微分してください 時間がなくてこのような質問になってしまいました すみません

  • 微分方程式の問題です。

    以下の問題の解答のチェックをお願いします。 図のyに関する微分方程式について、以下の問いに答えよ。 (a)y=e^zとおき、微分方程式をzに関する微分方程式に書き換えよ。 (b)dz/dx=v とおき、(a)で得られた微分方程式をvについて解け。 (c)微分方程式(1)の一般解を求めよ。 (a) z''-2(z')^2-z'=0 (z'=dz/dx) (b) v=Ce^x/(1-2Ce^x) (c) y=C1・(1-C2e^x)^(-1/2) 特に(c)が自信がありません。。。

  • 直交截線族と複素積分について

    直交截線族に関する問題で、以下の2問がうまく解けませんでした。コーシー・リーマンの関係式を使ってもう一方を求めてから変数を消去してできた問題もあるのですが、この2問はうまくいきませんでした。解き方が間違っているのでしょうか? 問題1 関数 w(z)=u(x,y)+iv(x,y) が正則ならば、u(x,y) = a ,v(x,y) (a,b は実媒介変数)で表されるz平面状の2組の曲線族は互いに直交する。この性質を用いて、次の曲線族の直交截線族を求めよ。 (3) x^2 + y^2 = 2ax (4) sin(x^2 + y^2) = ae^(2xy) ちなみに、略解はそれぞれ、 x^2 + y^2 = 2by、y - 2 = b(x - 1) です。 次に複素数積分の問題なのですが、8問中、下の2問だけ、留数定理をつかっても、うまく計算できませんでした。他の解き方で解かなければならないのでしょうか? 2.次の関数をそれぞれ示された閉曲線にそって積分せよ。 (7) (e^(1/z))/ z^2 (8) (e^z) / sin z 以上です。よろしくお願いします。

  • 偏導関数の問いを教えて下さい(偏微分方程式とかの)

    (1)z={(ax+by)^2}/(a^2+b^2)、a,bは定数、が下のものを満たすことを示しなさい。 (∂z/∂x)^2+(∂z/∂y)^2=4z (2)Φ(ε)が任意の微分可能1変数関数であるとし、u=u(x,y)=(x-y)Φ(x^2-y^2)とする。次が成立する事を示しなさい y・(∂u/∂x)+x・(∂u/∂y)=-u (3)uを点(x,y,z)と原点の距離u=(x^2+y^2+z^2)^(1/2)、あるいは点(x,y,z)とz軸の距離u=(x^2+y^2)^(1/2)とする。両方の場合に対し次が成立する事を示しなさい。 (∂u/∂x)^2+(∂u/∂y)^2+(∂u/∂z)^2=1、(u>0となる点で) お願いいたします