• ベストアンサー

三角関数 点と点の距離を表す

「座標平面上において、一定の長さaの線分QRの一端Qは、半直線y=0(x≧0)上を、他端Rは、半直線y=x(x≧0)上を動く。線分QR上に定点Pをとり、線分QPの長さをb、線分QRがx軸の正の方向となす角をθとする。 このとき原点Oと点Pの距離の2乗をa,b,θを用いて表せ。」 図示してみて、∠OQP=180°ーθ、を使って余弦定理かなと思ったのですが、OQの長さが出せず意味がありませんでした。y=xを与えているので∠ROQ=45°を使いそうなのですが、わかりませんでした。 何らかのヒントやアドバイスいただければ幸いです。よろしくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • debut
  • ベストアンサー率56% (913/1604)
回答No.1

>∠OQP=180°ーθ、を使って余弦定理かなと思ったのですが、OQの >長さが出せず意味がありませんでした。  考え方はこれだと思います。で、OQの長さを表すことはできます。  例えば、θが鋭角のとき、Rからx軸に垂線RHを引けば、△RQH  で、RH=a*sinθ、QH=a*cosθとなり、しかもRはy=x上なので  Rの座標は(a*sinθ、a*sinθ)です。だから、OQ=OH-QHから  a*sinθ-a*cosθと表すことができます。

その他の回答 (2)

  • Ki4-U2
  • ベストアンサー率81% (364/446)
回答No.3

RからOQへの垂線(交点をS)、 PからOQへの垂線(交点をT)を引いてみます。 ∠ROS(=∠ROQ)=45°=∠ORS から OS = RS 、 ST は a と b と θ から出せますから、OT も出せます。 (OQも出せますね) PT は b と θ から出せますから、 あとは三平方の定理です。

  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.2

>図示してみて、∠OQP=180°ーθ、を使って余弦定理かなと思ったのですが、OQの長さが出せず意味がありませんでした。 その方針でOKですね。 OQの長さは、三角形ORQで正弦定理を使えば求まりますね。

関連するQ&A

  • 二次関数

    放物線y=x^2+px+2pの頂点をQ、y軸との交点をRとするとき(pは0以外の実定数)直線QRがpの値に関係なく定点を通ることを示し、その定点の座標を求めたいんですが、直線QRの方程式を求めるとこまではできました。でもそれからどうすればいいのかわかりません。どなたか教えて下さい。 あと直線QRの求め方は以下のようでいいんですか? 頂点Q(-p/2,2p-1/4p^2) R(0,2p)より y=-1/4p^2/-p/2x+2p  =p/2x+2p

  • 一次関数

    関数 y=-x+12 のグラフと関数 y=2x のグラフとの交点を、A、y=-x+12とx軸との交点をBとします。また、線分OA上に点Pをとり、点Pを通りx軸に平行な直線と直線ABとの交点をQとします。 これについて、次の問いに答えなさい。 (1) 点Pのx座標が1のとき、線分PQの長さを求めなさい。     答え 9 (2) △AOQの面積と△BOQの面積が等しい時、直線OQの式を求めなさい。     答え y=1/2x (3) 線分PQの長さが8のとき、点Qのx座標を求めなさい。    答え 28/3 (1) (2) の求め方はわかりましたが、(3)が分かりません。 求め方を教えて下さい。

  • 関数の問題です。

    下の図のように関数y=1/2x^2のグラフ上にx座標が-6,2となる点A,Bをとる。また,線分AB上に点Pをとり,Pを通りy軸に平行な直線と放物線,x軸との交点をそれぞれQ,Rとする。このとき,次の問に答えなさい。 (1)直線ABの式を求めなさい。 (2)線分PQとQRの長さの比が3:1となるような点Pのx座標を求めなさい。 お願いしますm(_ _)m

  • 2次関数がわかりません。

    右の図のような直線y=x+3…(1)と放物線y=-1/4(四分の一)x²…(2)がある。 x軸上の正の部分に点Pをとり、その座標を(a,0)とする。 また、点Pを通り、y軸に平行な直線と直線(1)および放物線(2)との交点をそれぞれQ,Rとする。 次の問いに答えなさい。 (1)a=4のとき、線分QRの長さを求めなさい。 (2)a=2のとき、△ORPを、y軸を軸として1回転させてできる  立体の面積を求めなさい。※円周率はπとする。 (3)△ORQがOR=OQの二等辺三角形になるとき、  aの値を求めなさい。 (4) (3)のとき点Qを通り、△ORQの面積を2等分する直線と  x軸およびy軸との交点をそれぞれS,Tとする。  このとき、線分OSとOTの長さの比を最も簡単な整数の比で表しなさい。 という問題です。 先ほどの質問、画像が見えなかったりと 大変申し訳ありませんでした。 (1)、(2)は自分で解いてみましたが (3)、(4)はどうしてもわかりませんでした。 お願いします。

  • 中学校の二次関数を至急教えてください

    (1)図で点P、Qは放物線3分の1x^2 と点A(-6,0) を通る傾きが正の直線との交点である。 AQ:QP=1:3のとき点Pの座標はいくらか。 (2)図で直線lと放物線y=kx^2(kは正の定数)の交点をそれぞれ A、B、lとx軸との交点をCとする。 A、Bのx座標をそれぞれa、b、Cのx座標を-4、 AB:BC=8:1とするとき、 (1)aとbの値はいくらか。 (2)三角形OABの面積が64のとき、kの値はいくらか。 (3)図においてy=2x^2のグラフと直線y=2x+4との交点をそれぞれA、Bとする。また、y軸に平行な直線lと直線AB、放物線、x軸との交点をそれぞれP、Q、Rとする。 このとき、点Pが線分AB上にあるとき、PQ=QRとなるような点Pのx座標の値はいくらか。 数学が苦手なので分かりません、よろくおねがいします。

  • 点とちょくせんの距離の公式

    大学卒業してますが、どういうわけか数学を勉強してます。ご教授ください。 1)  ax+by+c   h=--------      √a^2+b^2 という公式ご存知でしょうか? とある点P(x、y)と、とある直線ax+by+cとの距離を求める公式です。ぼくの参考書にはこれを覚えようとしか書いていず、面白くありません。 さるでもわかるようにこの公式を教えてくれるかた、よろしくお願いします。 (ただ、表とか描けないから大変かな?) あと、もし公式の成立(帰納)をわかりやすく書かれている参考書をご存知でいらしたら教えてください。 2)定点について教えてください。 ある参考書の解説を読んでいました。 解説)直線2x+ky+1=0という式があったとします。kにいろんな値を代入することでさまざまな直線になりますよね。 さまざまな直線になりますけど、この直線はどれもあるひとつの点をとおります。この点を定点という。 と参考書に書いてあります。 そして問題文を見てわからないことがありました。 ****+問題****** 定点a(1、1)と直線l;kx+(k+1)y-2=0がある。 (1)kのあたいにかかわらず、直線lのとおる定点bの座標をもとめよ。                       == これを読んで、なんで定点が二つもでるの(aとb)?と思いました。 こんなことを知らなくても問題は解けるのですが、本当にわかった気がしなくて・・・。なんで定点がaとbがあるのかふしぎです。さきの解説を前提にするとひとつの直線に定点はひとつのはず。定点とはなんでしょうか?お願いします。

  • つねに定点を通る

    放物線 y^2=4pxの頂点 O(0,0)から、互いに垂直にひいた2本の直線がこの放物線と再び交わる2点 Q,Rを結ぶ直線は、つねに定点を通ることを示せ。 [解答] Q,Rのy座標をそれぞれ 2pα、2pβ(α≠β、αβ≠0)とおくと Q(pα^2,2pα)、R(pβ^2,2pβ) となる。OQ⊥ORとなるべきことから (2pα/pα^2)(2pβ/pβ^2)=-1 ∴αβ=-4...(1) 直線QRの方程式は、 x-pα^2=((pα^2-pβ^2)/(2pα-2pβ))(y-2pα) ∴2(x-pα^2)=(α+β)(y-2pα) ∴2x=(α+β)y-2pαβ...(2) (1)を(2)へ代入して 2x=(α+β)y+8p となる。この方程式で表される直線は、つねに定点(4p,0)を通る。 こんにちは 高校数学の代数幾何の問題です。 解答の式の変形や流れは分かりましたが、最後の 2x=(α+β)y+8p となる。この方程式で表される直線は、つねに定点(4p,0)を通る。 この意味がどうにも(自分的に)分かりません。 なぜ?この方程式で「つねに定点(4p,0)を通る。」と示されるのか? (多分、数学Iの恒等式の分野なのか?よく分かりませんが…) よろしくお願いします。 (数式など分かりづらい個所あらば補足します。)

  • 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。

    曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。次の問に答え... 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。 次の問に答えよ。ただし、Oは原点を表し、|PQ|、|OQ|はそれぞれ線分PQ、OQの長さを表す。 (1) Lがつねに定点(a,b)を通る曲線の方程式を求めよ。 (2) |PQ|=|OQ|となる曲線の方程式を求めよ。 (1)は以下のように考えました。 P(x,y)における法線はy’(Y-y)+X-x=0で、点(a,b)を通るので y’(b-y)+a-x=0 yy’-by’+ x-a=0 (y-b)dy=-(x-a)dx 両辺を積分して 整理すると、(x-a)^2+(y-b)^2=a^2+b^2 (2)は方程式の立て方が分かりません。 アドバイスお願い致します。

  • 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。

    曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。次の問に答え... 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。 次の問に答えよ。ただし、Oは原点を表し、|PQ|、|OQ|はそれぞれ線分PQ、OQの長さを表す。 (1) Lがつねに定点(a,b)を通る曲線の方程式を求めよ。 (2) |PQ|=|OQ|となる曲線の方程式を求めよ。 (1)は以下のように考えました。 P(x,y)における法線はy’(Y-y)+X-x=0で、点(a,b)を通るので y’(b-y)+a-x=0 yy’-by’+ x-a=0 (y-b)dy=-(x-a)dx 両辺を積分して 整理すると、(x-a)^2+(y-b)^2=a^2+b^2 (2)は方程式の立て方が分かりません。 アドバイスお願い致します。

  • 数II 三角関数

    この問題の解説をお願いします 2点A(0.8),B(0.9)を結ぶ線分をゴールとして、直線y=x上を移動している選手の位置をP(x,x)(x>0)とする。 この選手から見えるゴールの角度∠APBをθとするとき、次の問に答えよ。 (1)tanθをxで表せ。     (2)θが最大となるときにシュートするとして、そのときの選手の位置の座標を求めよ。 答:(1)tanθ=x/2x^2 -17x+72 (2)(6,6)