• 締切済み

直交変換と回転は同じものなの?

motsuanの回答

  • motsuan
  • ベストアンサー率40% (54/135)
回答No.2

>U=A・B・Cである3つの実数α,β,γが存在する」 >は正しいのですか? 多分正しいと思います(回転軸がxyzなのでややこしいと思いますが)。 例えば 回転の中心軸を(大円上を経由して)z軸にもっていき、 z軸を中心とした回転を行い それを元に戻すという操作をすればいいのではないでしょうか?

関連するQ&A

  • 3次元での回転による座標変換

    3次元での回転による座標変換に関して質問があります. X軸,Y軸,Z軸の直交座標系があるとします. この座標系において,ある位置ベクトル(a1,b1,c1)がX軸,Y軸,Z軸と成す角度は,θx,θy,θzは,ベクトルの内積から算出可能だと思います. θx=a1/sqrt(a1^2+b1^2+c1^2) θy=b1/sqrt(a1^2+b1^2+c1^2) θz=c1/sqrt(a1^2+b1^2+c1^2) X,Y,Zの直交座標系を回転させて,この位置ベクトルの向きを基準としたX'軸,Y'軸,Z'軸による新しい直交座標系を設定するには,どのようにすればよいでしょうか? θx,θy,θzと各軸での回転角度は違うものという認識でいいのでしょうか? 元の座標系において,各軸回りに順番に回転させればいいかと思うのですが,どうもイメージがつかみきれません. よろしくお願い致します.

  • 直交変換

    Z-軸を軸とする角θの回転で、ベクトル x=( x y z )^T を ベクトル x’=( x’ y’ z’ )にうつしたのち、y-軸を軸とする角φの回転で、 ベクトル x’=( x’ y’ z’ )^T をベクトル x”=( x” y” z” )^Tに うつしたとき、ベクトルxをベクトルx”にうつす直交変換の行列表示の求め方を教えてください。

  • 座標変換による回転角の求め方

    直交座標系で定義されている任意のベクトル(x1、y1、z1)に対し、そのベクトル方向に直交座標系のz軸が向くようにするための各軸回りの回転角(θx、θy、θz)の求め方(式)を教えてください。

  • 3次元空間の回転行列

    3次元空間上の点A(X,Y,Z)と点B(X',Y',Z')があるとします。ただし、点Bは、点Aを原点Oを中心とする3次元空間の回転をさせることによって得られる点とします。 このAをBへと回転させる行列を、特に以下のように考えて得られる回転行列として導出する方法を教えてください。 O,A,Bによって作られる平面に直交し、原点を通る軸を回転軸として、それを軸にAを∠AOB回転させる。 一応自分なりに考えたこの回転行列を求める方法としては、まず ベクトルOA、OBに対してシュミットの直交化を用いて新たな正規直交基底、Vx、Vy、Vzを求めます。ただし、はじめのVxの導出にはOAを用い、VzはVxとVyの外積を計算しました。 次にP=(Vx,Vy,Vz)として座標変換の行列Pを作ります。 そして、求める行列Wを W = PMz(P^-1) (Mzはz軸まわりに∠AOB回転させる行列、P^-1はPの逆行列) として導出しました。 このようにして解く方法を考えたのですが、これは正しいのでしょうか? また、これ以外にもっとスマートに解く方法があれば教えてください。 よろしくお願いします。

  • 3次元座標を原点中心に回転したい

    任意のゼロでないベクトル(a,b,c)を原点中心に回転し、z軸に合致させるとする。同じ回転移動を3次元座標上の任意の点(x,y,z)に対して行った時の移動後座標が知りたいのです。 計算と結果を教えて下さい。

  • ベクトルの直交について

    括弧付けたやつはベクトルだと思ってください d(r)=(ex)dx+(ey)dy+(ez)dz を曲線座標で表したい。一般の座標を、u1,u2,u3とすると、デカルト座標x、y、zはそれらの関数で表せるから d(r)={ラウンド(x)/ラウンドu1}du1+{ラウンド(x)/ラウンドu2}du2+{ラウンド(x)/ラウンドu3}du3 で表せる。 これを d(x)=(a1)du1+(a2)du2+(a3)du3で表すと、一般に(ai)は直交しないと書いてるんですが、これがよくわかりません。 (r)=(x,y)で2次元極座標で表したら、(a1)、(a2)って直交しませんか? ただ、単にこの曲線座標が特殊で、直交するだけですかね? もしそうなら、直交しない曲線座標のとり方など教えてもらいたいです。 非常に分かりにくい書き方ですみませんが、直交しないというのを教えてもらいたいです。 あと、ラウンド記号とベクトルに打ち方もわかりません。。。 お願いします

  • 座標変換

    3次元(x,y,z)物体の回転でよくx軸、y軸、z軸で回転がありますが、xy平面との角度φを回転させたいときはどうすればいいでしょうか? xy平面との角度をφ回転させた後の座標(X,Y,Z)はどうなるのでしょうか? また X     x Y = T・y Z     z このような行列Tが存在するのでしょうか?

  • 三次元座標の回転角度

    左手系三次元座標A(X,Y,Z)がB(x,y,z)に移動したとき、原点からみたZ軸の回転角度Θの算出は、 Θ=Atan(y/x)-Atan(Y/X) でいいですか。よろしくお願いします。

  • 3次元以上の直交変換(回転)を、2つのベクトルから求める方法。

    3次元以上の直交変換(回転)を、2つのベクトルから求める方法。 ユークリッド空間上で、例えば、ある2つのベクトルa,bが、 a = [1,0,0]; b = [0,1,0]; のように与えられたとき、aベクトルをbベクトルへ「視覚的に」重ね合わせる直交変換を探しています。 つまり、 b = Xa を満たす直交変換(回転行列)Xの求め方を探しています。 私のイメージとしては、3Dのポリゴンで描かれた自動車をマウスでグリグリ回転させるときに、正面を向いた状態から真横に向ける回転になるでしょうか。 無論、求める直交変換が一意に定まらないことは承知しております(ベクトルと垂直な面方向の自由度など)。また、sinやcosを使う方法は存じ上げておりますが、現在研究中のテーマに不適であるため、あえて利用しません。 どうにか、a,bの成分のみで直交変換を求める(または、直交変換の条件を決定する)一般的な方法があればご教授願います。 また、3次元よりも大きな場合に、例えば、 a = [1,0,0,0]; b = [0,1,0,0]; としたときの、aからbへの回転行列は自由度が高いのですが、 b = Xa を満たす回転行列Xをa,bを用いてどのように求めることができるのでしょうか。 支離滅裂な説明になっているかもしれませんが、もしご存知であればその参考となるURL等をご教授下さい。

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。