• ベストアンサー

δ≡0なんて信じられない!

stomachmanの回答

  • ベストアンサー
  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

超関数ってのは、躓くとやっかいなもんですね。 h(t)はヘビサイド関数、 すなわち h(t)=∫dsδ(s) (s=-∞~t) であり、 > H0(f)=∫dt・exp(-i・2・π・f・t)・h(t) はそのフーリエ変換で、積分は-∞~∞の定積分ですね。 符号関数sgn(x) を sgn(x) = if x>0 then 1 elseif x<0 then -1 else 0. としますと h(t) = 1/2(1+sgn(x)) です。1のフーリエ変換はδ(f), sgn(x)のフーリエ変換は1/(πi f)であり、 H0(f) = (1/2)δ(f) + 1/(2πi f) となります。0でのわり算は通常の意味では定義されないことに注意すれば、この右辺は、f≠0の時には第1項(1/2)δ(f) はいつも0です。逆にf=0なら第2項 1/(2πi f)は通常の関数としては定義されません。ですから f≠0であれば至る所、通常の関数1/(2πi f) と一致する。つまり ∀f(f≠0→H0(f) = 1/(2πi f) ) というのなら文句はありません。これをf=0の場合にまで拡張したとき、話がおかしくなる。 H0(f)は何かおとなしい関数と積を作って積分したときだけ意味をもつ積分核、或いは演算子、要するに超関数そのものであることがここに現れています。 かくて、 > δ(f) > =∫dt・exp(-i・2・π・f・t) > =∫dt・exp(-i・2・π・f・t)・(h(t)+h(-t)) > =∫dt・(exp(-i・2・π・f・t)+exp(i・2・π・f・t))・h(t) =H0(f)+H0(-f) ここまではオッケーですが、以下は(f≠0)のときにだけ成り立つことに注意が必要です。 > =1/(i・2・π・f)-1/(i・2・π・f) > =0  つまり、この計算は ∀f (f≠0 → δ(f)= 0 ) を示している訳で、これ自体なんら問題ありません。

関連するQ&A

  • フーリエ変換逆変換

    h(t)のフーリエ変換をH(ω)とし、フーリエ変換逆変換の定義は以下を用いるとする。 H(ω)=∫[-∞ to ∞]h(t)exp(-iωt)dt h(t)=(1/2π)∫[-∞ to ∞]H(ω)exp(iωt)dω h(t)=(1/2π)∫[-∞ to ∞]H(ω)exp(iωt)dω   =(1/2π)∫[-∞ to ∞]∫[-∞ to ∞]h(t)exp(-iωt)dt*exp(iωt)dω という風にHを代入し、逆変換でもとのhに戻ることを示そうとしたのですが、部分分数展開もうまくいかず、手詰まりとなってしまいました。 どの様にすればもとの式に治せるのでしょうか?

  • フーリエ変換

    「高校数学で分かるフーリエ変換」という本(ブルーバックス)内の記述に関する質問です。 当方は初学者ですので,とんちんかんな質問があると思いますが,よろしくお願いします。 質問の前提となる記述は次のとおりです。  ある振動数fの電界の波がE(f)のサイン波なので,E(f)=exp(-a(f-f0)^2 × sin(-ωt)  このサイン波を全振動数に関して足すと(積分すると)時間軸上の電界パルスE(f)ができる。  E(t)=∫(exp(-a(f-f0)^2 × sin(-ωt))df     =∫(exp(-a(f-f0)^2 × Im[exp(-iωt)])df    最終的に,E(t)とE(f)の関係がフーリエ変換になっている。 質問です。 1 本を読む限り,「ある関数f(t)をフーリエ変換する場合,exp(-iωt)をかけて,時間で積分する。」と理解できるのですが,上記の式は,exp(-iωt)をかけて,時間で積分した形跡がないのにどうしてフーリエ変換したことになるのでしょうか。 2 振動数の関数を時間の関数にするために,F(t)=∫g(f)exp(iωt)dfをフーリエ逆変換との記述を見たことがありますが,正しいでしょうか。正しいとするなら,1はフーリエ逆変換なのでしょうか。 (式の前に1/2πなどが付くことがありますが,省略しています。) 3 E(t)=∫(exp(-a(f-f0)^2 × sin(-ωt))df     =∫(exp(-a(f-f0)^2 × Im[exp(-iωt)])df  sin(-ωt)df=Im[-ωt] この意味が分かりません。Imは複素数の虚部を表しているとは思うのですが・・・。  以上,要領を得ない質問ですがよろしくお願いいたします。

  • ラプラス・フーリエ変換

    JJサクライ上の(2.5.23)式の導出が分かりません。 g(t)があるときに、 G(E) = -i ∫dt g(t) exp(iEt/h) / h 積分範囲は0から∞ hは実際には h/2πの意味です。 という「ラプラス・フーリエ変換を考える」と本には記述されています。ぱっと見た瞬間は、単なるラプラス変換かと思ったのですが、 ところが、ラプラス変換やフーリエ変換を詳しく調べて みたのですが、惜しいところまでは何度も行くのですが、 結局どうやってもg(t)から上の式に繋げることができません。 上の式はどんな知識から導かれるものなのでしょうか?

  • exp(-t/T)cos(ωt)のフーリエ変換について教えてください。

    フーリエ変換について質問です。 exp(-t/T)cos(ωt)のフーリエ変換に行き詰っています。積分区間は-∞→∞で ∫exp(-t/T)cos(ωt)exp(-iωt)dt (T,ωは定数)としてexp(-iωt)=cos(ωt)-isin(ωt)を利用して ∫exp(-t/T){cos(ωt)}^2dt-i∫exp(-t/T)cos(ωt)sin(ωt)dt =1/2[∫exp(-t/T){cos(2ωt)+1}dt-i∫exp(-t/T)sin(2ωt)dt] と変形し、それぞれの項について部分積分を試みたのですが、最終的に発散してしまい答えにたどり着きません。 また、答えは実数部が吸収型、虚数部が分散型のピークのグラフが描けるはずなので、どこかで超関数を用いなければならないと思うのですが、どこで使うのかも分かりません。 どなたか、よろしくお願い致します。

  • exp(-π(t^2))のフーリエ変換の積分計算で

    f(t)=exp(-π(t^2))のフーリエ変換の積分計算でつまずいています。 ∫(-∞->∞)f(t)*exp(-iωt)dt で、exp(-iωt)をオイラーの公式でcosとsinの式に直し、偶関数、奇関数の性質からsinの項が消え、 2∫(0->∞)exp(-π(t^2))*cos(ωt)dtとなりました。 しかし、eの指数部分のt^2が厄介で積分ができません。 積分方法、または別解がありましたらご教授いただけると幸いです。

  • フーリエ変換について

    フーリエ変換について 次の信号(三角波)をフーリエ変換したいのですが、 f(t)=-t+2,0≦t≦2      t+2,-2≦t<0 解答では、 F(ω)=2∫(0⇢2)(-t+2)cosωtdtを計算することとなっていました。 フーリエ変換の定義式では F(ω)=2∫(0⇢2)(-t+2)e^(-jωt)dtとなっているため、何故上記の式となったのかが分かりません。 途中式を書いていただけると幸いです。

  • フーリエ変換のwの正負について

    フーリエ変換の式は、 F(w)=∫f(t)exp(-jwt)dt ですが、ここでexp(-jwt)をexp(jwt)にしてはだめなのでしょうか? wの正負が逆になると、どのような意味を持つのでしょうか?

  • 合成積の式にフーリエ変換の関数を代入可能ですか?

    (f*g)(t) = ∫[-∞,∞] f(s) g(t-s) ds のf(s)とg(t-s)の部分にフーリエ変換の関数F(s)とG(k-s)を代入できますか? 定義を二つ書きます: ・フーリエ変換の式 F(k) = ∫[∞,-∞] f(t) exp^(-ikt) dt (式5.26) 関数F(k)は非周期関数f(t)のフーリエ変換と呼ばれ、(式5.26)はフーリエ変換を計算する式である。 ・合成積 区分的に滑らかで絶対可積分である2つの関数f(t), g(t)が与えられたとき、f(t)とg(t)の合成積(または、たたみこみ)を (f*g)(t) = ∫[∞,-∞] f(s) g(t-s) ds (式6.28) によって定義する。この式の左辺では、f*gが1つの関数の名前であることをはっきり示すために括弧で括ってあり、合成積はtの関数なので(t)と書いてある。 ・・・上記二つの式を踏まえて、 (F*G)(t) = ∫[∞,-∞] F(s) G(k-s) ds (式6.28)' と代入できますか?

  • 数学の解析学の質問です

    数学のフーリエ解析についての質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dtと定義する。 関数F(ω)のフーリエ逆変換をf(t)とするとき、次の2つの関数のフーリエ逆変換を求めよ。 (1)F(2ω) (2)F(ω-1) 解答、解説がなく困っているので、どなたか分かる方がいらっしゃれば教えていただけると幸いです。 よろしくお願いします。

  • 【フーリエ展開】発散しない理由

    関数f(t)のフーリエ変換をF(t)とします。 g(t)=df(t)/dt のとき g(t)のフーリエ変換G(t)をF(t)で表せ、との問題です。 G(t)=∫[-∞,∞] df(t)/dt exp(-iwt) dt の積分を行って計算しようとしました。 そこで、[f(t) exp(-iwt)][-∞,∞]+iw∫[-∞,∞] df(t)/dt exp(-iwt) dt となり、[f(t) exp(-iwt)][-∞,∞]=0より G(t)=iwF(w)と答えを出したいのですが、 [f(t) exp(-iwt)][-∞,∞]=0となることが理解できずに 困っています。この値は発散しませんでしょうか? 数学に詳しい方が居られましたら どうぞよろしくお願い致します。