• ベストアンサー

「n! は平方数にならない」?

 以前,大学の入試問題で(どこ大学かは失念しました), 「1 から 10 までの自然数を 2 グループに分け,それぞれ積をとる。このとき 2 つの積が一致することはあるか」 というものがありました。  答えは「ない」で,それは 10! が平方数にならない,ということなのですが,ポイントとしては,「10 までの自然数の中には 7 の倍数は 1 つしかないから,2 つのグループの一方は 7 の倍数で,他方は 7 の倍数でない,だから一致しえない」ということでした。  そこで疑問なのは,これは一般の 2 以上の自然数 n について,n! は平方数にならないのか,ということです。  これは,【n/2 から n までの間に素数が必ず存在する】ことが証明できればよくて,実際そうであって,「n! は平方数にならない」は真とのことでした。  ところがこの【 】の部分の証明が,簡単に流されているものが多くて,釈然としません。  この証明の全容がわかる文献か,または証明のポイントをご教示願えますか。

質問者が選んだベストアンサー

  • ベストアンサー
  • yoikagari
  • ベストアンサー率50% (87/171)
回答No.3

実は以下の性質があります(この証明のポイントともいえるもの)。 mを1以上の自然数とするとm<p≦2mを満たす素数がpが必ず存在する。・・・※ これは、質問文中の,【n/2 から n までの間に素数が必ず存在する】を少し言い換えたものです。 ※はベルトランの仮説ともチェビシェフの定理とも呼ばれ、証明は意外と大変です。 この定理の証明があるPDFを載せて置きます。

参考URL:
http://www1.ocn.ne.jp/~yoshiiz/pdf/chebyshev.pdf
elttac
質問者

お礼

 ご回答ありがとうございます。  PDF を拝見しましたが,なるほど大変な証明です。じっくり理解したいと思います。

その他の回答 (2)

  • tatsumi01
  • ベストアンサー率30% (976/3185)
回答No.2

質問は【n/2 から n までの間に素数が必ず存在する】ことが証明できるか、ですね。 そう簡単には証明できないと思います。自然数 n 以下の素数の個数をπ(n) と書くと、ガウスの素数定理 π(n) ~ n/log(n): log は自然対数 が成立しますが、これから [n/2, n] に素数があるとは確言できないような気がします。

elttac
質問者

お礼

 ご回答ありがとうございます。  No. 3 のご回答で【n/2 から n までの間に素数が必ず存在する】証明をご紹介いただけました。

回答No.1

 1からn/2までに素数pがあったとしても、その場合はn/2からnの間に必ず2pが存在しますから、2グループに分けた時に積を一致させることができます。  しかしn/2からnにおいて素数qがあれば、1からnの範囲で素因数qを持つ自然数はありませんね(素因数qをもつ自然数とはq,2q,3q・・・なので2qの時点でnを超える自然数だからです)。だから2グループに分けれません。

elttac
質問者

補足

 答えは「ない」でよさそうなのですが,問題は, 【n/2 から n に素数は必ずあるか】 ということなのです。この証明をご存じでしたらご教示ください。

関連するQ&A

  • 平方数でない自然数の数列

    自然数の数列 1 2 3 4 5 6 7 8 9 10 11 ,,, から 平方数の数列 1 4 9 16 ,,, を取り除くと、 平方数でない自然数の数列 2 3 5 6 7 8 10 11 12 13 14 15 17 ,,, が得られますが、その一般項a[n]は、 a[n] = n + [1/2 + √n] または a[n] = n + [ √( n + [ √n ] ) ] と表されるそうなのですが、どうのように求めればよいのでしょうか?

  • 4n+1型の素数について

    4n+1型素数の無限性を示せ。 次のように考えた。行き詰まったのでアドバイスをお願いします。 4n+1の素数は有限で最大をpとする。 k=4(5×13×・・×p)+1 とおく。 kは合成数のとき、kは4n+3型の素数の偶数個の積に素因数分解できるから、  k=(4x+1)(4y+1) x,y自然数   =16xy+4x+4y+1  となる。  このあとの矛盾の導き方が見えないので、この流れの証明とすると このあとどうなるのか、よろしくお願いします。

  • 6の倍数になることの証明

    nが自然数の時、n(n+1)(nー1)が6の倍数になることを証明せよ。 連続した3つの整数の積が6の倍数になることの証明なのでn=2aと n=2a+1にわけて証明するのかと思うのですが、わかりません。どのように証明したらよいかどなたか教えて頂けませんか。

  • 3n+1 の素数について

    3n+1 型 の素数の無限性を証明せよ。 次のような証明をしようとしたが、うまくいきません。アドバイスをお願いします。  3n+1型の素数は有限とし、最大な素数をpとする。  k=3(7×13×・・・×p)+1 とおく。  kは合成数であるから、素因数分解され、3n+2型の偶数個の積になる。(3n+1型の最大素数がpであることから)    *このあとの証明がうまくいきません。よろしくお願いします。

  • 平方数の証明

    (x^2+y^2)と(x^2-y^2)の二式が共に平方数になるための自然数x,yが存在しないことを証明してください。

  • 背理法による証明

    以下の問題を背理法で証明したいのですが・・・。なかなか進まなくて。 どなたかお分かりの方がいらっしゃいましたらお願いいたします。 nは自然数とする。このとき(n-1)^3+n^3+(n+1)^3は9の倍数であることを証明しなさい。 です。 連続する3つの数の積が3の倍数になることを利用するとは思うのですが・・・。よろしくお願いいたします。

  • nを自然数とするとき、n

    nを自然数とするとき、n^5とnの1の位の数は一致することを示せ。

  • 双子素数についてのことです

    双子素数がむげんにあるということの証明は これで充分じゃないでしょうか? nは2以上の自然数 (1~n 番目の素数をかけていった積)+1 は素数 (1~n 番目の素数をかけていった積)-1 は素数 (1~n 番目の素数をかけていった積)±1 は双子素数 素数は無限個あるので双子素数も無限個あることになる これでいいのではないでしょうか?

  • nが整数のとき, 2n^3+3n^2+n は6の倍数であることを証明せ

    nが整数のとき, 2n^3+3n^2+n は6の倍数であることを証明せよ。 上の解き方は,n(n+1)(2n+1)に因数分解し, 2の倍数かつ3の倍数であることを証明すればよいと思うのですが, 教科書には, 2の倍数であるというのは,n(n+1)が連続する2つの整数の積だから証明でき, 3の倍数であるというのは, kを整数として  n=3kのとき,n=3k+1のとき,n=3k+2のときに3×○の形にすれば証明できるとありました。 ここで質問なのですが, なぜ,n=3k n=3k+1 n=3k+2 にするのでしょうか? n=k n=k+1 n=k+2 ではなぜ駄目なのか教えていただけませんか?  

  • 自然数Nをいくつかの自然数に分割してから積をとるときの最大値

    与えられた自然数Nに対して、Nをいくつかの自然数に分割してから積をとる。 このとき、その積が最大となるのはどのように分割したときでしょうか? たとえば、 5=3+2 と分解したとき、積の最大値は6 6=3+3 と分解したとき、積の最大値は9 7=3+4=3+2+2 と分解したとき、積の最大値は12 10=3+3+4=3+3+2+2 と分解したとき、積の最大値は36 このように分割の個数はいくつでもいいです。 できるだけ、3ずつに分割したほうがよさそうなことが予想できると思います。 この辺の証明や、また、条件を適度に変えたときの話題について、アイデアがありましたら、教えていただけないでしょうか? たとえば、和と積を交換したら、どのような結果が予想されるでしょうか?