• ベストアンサー

素数の世界、、、 Thueの証明で

n,k≧1を(1+n)^k<2^nなる整数とし、p1=2,p2,,pr≦2^nなる全ての素数とする。ここでr≦kを仮定する。  自然数が素数の積として一意に分解されるという基本定理から、 全ての整数m(1≦m≦2^n)は次の形に一意的に 表される、m=2^e13^e2・・・pr^er (2からprの素数の累乗です) 問題はこのあと、 すべての可能性を検討することにより 2^n≦(n+1)n^(r-1)<(n+1)^r≦(n+1)^k<2^n の不等式です。右の3つは当たり前なのですが どうにも 2^n≦(n+1)n^(r-1) n+1かけるnのr-1乗のところが2のn乗以上になるのがよく分かりません。すべての可能性を検討するってどうしたらよいのでしょう。お教え下さい。

  • zou1
  • お礼率35% (5/14)

質問者が選んだベストアンサー

  • ベストアンサー
  • yoikagari
  • ベストアンサー率50% (87/171)
回答No.1

1以上2^n以下の自然数の個数が2^n個であることは大丈夫? あとは、m=2^(e_1)*3^(e_2)*・・・*(p_r)^(e_r) 0≦e_1≦n、0≦e_2≦n-1、・・・、0≦e_r≦n-1 と書ける自然数mの集合をSとします。 mの値はe_1、e_2、・・・、e_rによって定まります。 0≦e_1≦nですから、e_1の取れる値はn+1通り 0≦e_2≦n-1ですから、e_2の取れる値はn通り ・・・ 0≦e_r≦n-1ですから、e_rの取れる値はn通り よって、mは(n+1)n^(r-1)通りの値をとります。 したがって、Sの要素の個数は(n+1)n^(r-1)個あります。 一方、1以上2^n以下の自然数kは、 k=2^(e_1)*3^(e_2)*・・・*(p_r)^(e_r)とかけますから、kはSの要素である。 したがって、2^n≦(n+1)n^(r-1)となります。

zou1
質問者

お礼

早速のご回答ありがとうございます。解決しました

その他の回答 (1)

  • liar_adan
  • ベストアンサー率48% (730/1515)
回答No.2

中身は検討していないのですが、 この式おかしいんじゃないでしょうか? 2^n≦(n+1)n^(r-1)<(n+1)^r≦(n+1)^k<2^n の各式をそれぞれA,B,C...とおいてみると、 A≦B<C≦D<A となって、あきらかに矛盾です。 参考書に何かミスがあるのでは。

zou1
質問者

補足

矛盾の証明なので、ミスではないようです

関連するQ&A

  • 素因数分解の問題

    久々に素因数分解の問題を解いてみようとしたところ、いきなり躓いてしまいました。 二桁の整数nに168をかけると、ある数の二乗になりました。この整数nはいくらになるかという問題です。 168を素因数分解し、n×168=n×2^3×3×7となることは分かります。 これから先、どのように組み立てて解けばよいのか分かりません。 解説では、各素数が偶数個になるように解くと書かれており、ある数の二乗になるため、 n=2×3×7×m^2となっていました。 どうしてこのような式なるのですか? A=A^p×b^q×c^rとなっている時、各指数がすべて偶数(2の倍数)なっていれば、Aは何かの二乗になることは確かめてみました。

  • 素因数分解の証明問題

    素因数分解の証明問題 証明方法がわかりません。 自然数の素因数分解をn=(P_1)^e_1(p_2)^e_2・・・(p_r)^e_rとする。このとき、 φ(n)=n{1-(1/p_1)}{1-(1/p_2)}・・・{1-(1/p_r)}となることを示せ。 ただし、自然数m,nに対して、gcd(m,n)=1ならば、φ(mn)=φ(m)φ(n)であることを用いよ。 よろしくお願いします。

  • 素因数分解の一意性?????

    m,n,p,qをすべて互いに素な自然数とした時に、 2^n・p^m=q^mにおいて、 素因数分解の一意性より、qは2の倍数である。 素因数分解の一意性ってどういうことなのでしょうか?

  • 背理法を使わない証明

    2つの正の整数m,nについて、m^(1/n)が有理数ならばm^(1/n)は整数であることを証明せよ とりあえずn乗してm=p^n/q^nとなりました。 どなたか詳しく教えてください!

  • P(n)をnの最大の素因数としたとき、

    整数論の問題です。 整数n≧1に対して, P(n)をnの最大の素因数とします。 このとき, P(n^2+1)→∞(n→∞)となる。 n≧240ならばP(n^2+1)≧17となる。 のですが、どうしてでしょか? さらに、P(n)≦7, P(n+1)≦7となる整数nを全て求めると、どうなるでしょうか?

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 無理数 有理数に 関する問題

    以下の問題 お尋ねします 自然数nの平方根の整数部分をmとし、小数点以下をkとします すなわち√n=m+k このとき mの三乗とkの三乗の和を kで割った数が 有理数となるときの nを求めよ という問題ですなのですが ご興味おありのかた ご教示できる方 宜しくお願い致します。 また もし上記レベルの問題を考えるに際して 無理数 有理数の解説に適当な問題集や テキストご存知の方 教えてください 大学レベルでも けっこうです

  • 高校数学の整数問題です

    [問題] 素数pに対してpx^2+xが整数となるような有理数xをすべて求めよ。 これを取り扱った授業では次のような解説がありましたが、(4)の式から【 】部へともっていく論理の展開が分かりません。  ―・―・ー・―・― [解答] xは有理数ゆえ、x=n/m …(1) とおける。 (m,nは互いに素な整数で、m>0 …(2)) これを与式に代入して、 p(n/m)^2+(n/m)=k (k:整数) …(3) とすれば、 k=(pn^2+mn)/m^2 ={n(pn+m)}/m^2 …(4) 【mとnは互いに素ゆえ、kが整数となるには素数pがmの倍数、つまりmはpの約数であることが必要。】  ∴m=1 or p (i) m=1のとき (4)よりk=n(pn+1)となるから、n,pは整数より、kも整数となり成立。 このとき(1)より x=n (ii) m=pのとき (4)よりk={n(pn+p)}/p^2={n(n+1)}/p m(=p)とnは互いに素より、n+1がpの倍数と分かり n+1=pl (l:整数) …(5) とおけば、k=nl(=整数) となる。 このとき(1)、(5)より x=n/m=(pl-1)/m =(pl-1)/p=l-(1/p) 以上(i)、(ii)より x=n または x=l-(1/p) (n,lは任意の整数)  ―・―・―・―・― 僕の思考回路としては、(4)の式を見て、kが整数ということは 分子のn(pn+m)がm^2を因数にもつ、 つまりn(pn+m)=●m^2 (●:整数) と考えたのですが、この後の進め方が分からず手が止まりました。 解説の論理展開の意味がお分かりの方、ご教授ください。

  • 背理法についての質問です

    p√2が無理数であることを背理法を用いて証明せよ。 という問題です。 √2が無理数であるという証明は、下のようにわかるのですが p√2が無理数であるという証明は同じように解けるのでしょうか? √2が有理数であると仮定し,これをn/mとおく. (ここに,m,nは整数で互いに素) 両辺を2乗すると 2=(n/m)^2 2m^2=n^2 よって,nは2の倍数・・・(1) n=2kとおく 2m^2=4k^2 m^2=2k^2 よって,mは2の倍数・・・(2) (1)(2)はm,nが互いに素という仮定に反し,矛盾. ゆえに,√2は無理数

  • 『3^x=5を満たすxは無理数』の証明(※数IIの内容)

    『3^x=5を満たすxは無理数であることを示せ。』の証明問題を解いています。 解答での疑問があるのですが、 僕は塾には行っておらず、5連休で学校にも行けないので、利用させてもらいます。 載っている解答(一部)は以下です。 3^x=5を満たす有理数xが存在すると仮定する。 3^x=5>1であるから、x>0である。・・・(★) ゆえに、x=m/n(m、nは正の整数)と表せる。 よって、3^m=5^n これを満たすm、nの値はないから、有理数xは存在しない。 ・ ・ ・ と続いていくのですが、(★)の部分は必要でしょうか。 言い換えると、 x>0を言わずに、x=m/n(m、nは整数かつn≠0 ⇒有理数の定義)として、 証明を進めていっても、3^m=5^nを満たすm、nは存在しないのではないでしょうか。 また、これを満たす整数m、n(n≠0)があるのであれば、教えてください。 整数の範囲で考えると、m=0、n=0の場合がありますが、 これも、x=m/n=0/0となるので、xの値は存在しないですよね? 自分でもいろいろ考えてみましたが、これくらいしか出てきません・・・ わかる方いましたら、教えてください。