• 締切済み

エミッタフォロワはなぜ発振しやすい?

エミッタフォロワに関して書籍などからその特性は分かりましたが、どうも原理が分かりません。どなたか教えていただけませんか? よろしくお願いします。 -以下のようなことが分かりません。- エミッタフォロワ回路は発振しやすく、原因として以下の理由があるそうです。 1.入出力信号が同相 2.ベースの入力インピーダンスが高い 対策としては、以下の方法があるそうです。 1.ベースに数十Ω~数百Ωの抵抗を入れる 2.コレクタの電源部とグランド間にデカップリングコンデンサを入れる

みんなの回答

  • nano_cat
  • ベストアンサー率24% (26/106)
回答No.1

理由1.2.が書いてあるのになぜ発振しやすいのかわからないということは、「発振」の原理がわからないからですね。「発振」とは何か、どういう状態なのか、を考えてみましょう。

kukumumu
質問者

補足

回答ありがとうございます。 正帰還がかかっていると言うことでしょうか?

関連するQ&A

  • トランジスタ

    今電子回路を勉強している全くの初心者です。 トランジスタのベース接地、エミッタ接地、コレクタ接地回路について わからないことだらけです! 3つのトランジスタの基本増幅回路の特徴として、入出力インピーダンスの大小や電圧利得の大小、周波数特性の良し悪しなど電子回路の参考書や ウェブ上に表としてよく書かれているけど、「なぜ大きいのか?」「なぜ小さいのか?」が詳しく書かれている書物やウェブサイトを発見できません。 そこで質問なのですが、なぜベース接地では入力インピーダンスが 低く出力インピーダンスが高いのか理解できません。あと、エミッタ接地の入出力の位相が逆相でベースとコレクタ接地の位相が同相なのか?また、なぜベース接地とコレクタ接地の周波数特性が良いのか?どなたか説明していただけませんか?

  • エミッタ接地では何故入出力の波形が逆相に?

     疑問なのは、エミッタ接地では何故入出力の波形が逆相になるか、ということです。 それと同時になぜ他のコレクタ,ベース接地では入出力の波形が同相のままなのでしょうか?

  • 伝送ラインの考え方について

    内部インピーダンスが50Ωの発振器と電圧計があります。その間を75Ωの特性インピーダンスをもつ同軸ケーブルで接続した場合の電圧計の読みはどのようになるのでしょうか?また考え方についてご教授いただけないでしょうか?

  • ブロッキング発振回路と同調帰還型発振回路の違い

    ブロッキング発振回路と同調帰還型発振回路はどう違うのでしょうか? 下記に載せている画像は、ブロッキング発振回路です。 ブロッキング発振回路の「トランス」の右側に並列に「コンデンサ(C2=200p)」を入れると、同調帰還型発振回路になると説明されました。 そして、下の画像のブロッキング発振回路のC1の大きさにより、同調帰還型発振回路もブロッキング発振を行うようになる、と説明がありました。 ブロッキング発振回路と同調帰還型発振回路の関係性がいまいち分かりません。同調帰還型発振回路は上位互換のようなものなのでしょうか? どちらの回路も、トランジスタが0.6v程度を超えると、スイッチONになり、電流が一気に流れるそうです。すると、電位が下がるそうです。で、トランジスタはOFFになる。 それから、ベース側にある「コンデンサ(C1)]の電流は長い時間をかけて放電して、空になり、すると、またトランジスタのスイッチがONになるそうです。 こういう動作を繰り返すことが、どういう応用が効くのでしょうか? 同調帰還型発振回路は、C1とトランスが同調することにより、トランジスタ側から見ると、純抵抗となり、純抵抗とC2の回路とみなすことができるそうです。 しかし、こちらもそれがどういう応用が効くのかが分かりません。 長々とした文章になり、すみません。 よろしくお願いします。

  • トランジスタのコレクタ接地について

    こんにちは。トランジスタ初心者です。 勉強していて思ったのですが、なぜベース接地静特性、エミッタ接地 静特性はあるのにコレクタ接地静特性はないのでしょうか?以前にも このような質問が2件ほどあったようなのですが、その回答を見ても 納得できません。基本的に4つのhパラメータ(入力インピーダンス、 出力インピーダンス、電流増幅率、電圧帰還率)のおのおのに、静特性 のグラフが対応しているというふうに認識しています。実際に、 ベース接地のIe-Veb特性からはベース接地の入力インピーダンス ベース接地のIc-Vcb特性からはベース接地の出力アドミタンス ベース接地のIc-Ie特性からはベース接地の電流増幅率 ベース接地のVeb-Vcb特性からはベース接地の電圧帰還率 エミッタ接地のIb-Vbe特性からはエミッタ接地の入力インピーダンス エミッタ接地のIc-Vce特性からはエミッタ接地の出力アドミタンス エミッタ接地のIc-Ib特性からはエミッタ接地の電流増幅率 エミッタ接地のVce-Vbe特性からはエミッタ接地の電圧帰還率 がそれぞれ読み取れますよね?この8つに関しては参考書等で確認 できたのですが、これと全く同様に、 コレクタ接地のIb-Vbc特性からはコレクタ接地の入力インピーダンス コレクタ接地のIe-Vec特性からはコレクタ接地の出力アドミタンス コレクタ接地のIe-Ib特性からはコレクタ接地の電流増幅率 コレクタ接地のVec-Vbc特性からはコレクタ接地の電圧帰還率 が読み取れてもいいと思うのですが、なぜコレクタ接地のグラフは 存在しないのでしょうか? ためしに自分でこれらの特性を描こうと思っても、初心者ゆえに 全然イメージできませんでした。単純にエミッタ接地、ベース接地、 コレクタ接地の3つを同等に考えた場合、コレクタ接地の静特性の 存在を気にするのは自然な流れのような気がするのですが… 確かに、無くてもエミッタ接地hパラメータ等で計算できるので、問題 ないのはわかりますが、何かしっくりきません。 コレクタ接地だけ特別なのでしょうか? どなたでも是非回答をお願いします。

  • オペアンプを用いたフィルタ回路の入出力インピーダンスに関する質問です

    オペアンプを用いたフィルタ回路の入出力インピーダンスに関する質問です 回路初心者なので基本がわかっていません。 1. 例えばSallen-Key型3次ハイパスフィルタの入出力インピーダンスは   どのように求めるのでしょうか?伝達関数は求めてあります 2. 能動フィルタの利点の1つにマッチングが不要とありました。   これは入出力インピーダンスに関わる話なのでしょうか?   もしそうだとすれば能動フィルタの場合、入出力インピーダンスは考えなくてもよいのでしょうか? 3. そもそも入出力インピーダンスとはどの単位で回路を区切って考えるものなのでしょうか?   大規模であれ、小規模であれその基準がわかりません。   また、入出力インピーダンスとは何のために考える必要があるのでしょうか?     4. 実際の回路で例えば上記Sallen-Key型3次ハイパスフィルタの   前段、後段にカップリングコンデンサを入れる場合。このカップリングコンデンサは   単に入れたらフィルタの初段コンデンサと直列に挿入されますが、これでは   求めた特性に狂いがでると思います。どのように対応するのでしょうか?

  • 10Base2の同軸ケーブルについて

    イーサネットの10BASE2ではRG同軸ケーブルの RG58 A/Uが使われていますよね。 これはケーブルの特性インピーダンスと10BASE2の 終端抵抗が共に50Ωというだけの理由なのでしょうか? 例えば特性インピーダンスが50Ωの同軸ケーブルなら 5D2Vというものもあるのですが、特性インピーダンス =終端抵抗=50Ωなので、RG58タイプのケーブルと 同様に伝送には問題ないのでしょうか?

  • 80MHz帯で発振する発振回路をブレッドボードで

    制作したのですが、どうやっても50MHz付近で発振してしまいます。あと電源と並列にバイパスコンデンサをつけると回路に手を触れても安定して発振するようになったのですが、出力がかなり低下してしまいました。考えられる原因を教えてください。回路は以下のサイトのコレクタ接地型のコルピッツ発振回路の定数を次のように変えて制作しました。 Vcc=9V(006P角型乾電池)、 R1=100k, R2=33k, R3=5k, R4=0, C1=10p, C2=100p, C3=1000p L=0.4uH(FCZ7S80) Tr=2sc1815 →http://bbradio.web.infoseek.co.jp/osc_c/osc_c.html

  • OP-アンプの発振に関することに関して教えて下さい。

    OPアンプは高周波帯において、出力側で位相が遅れた成分が入力側に戻ることで、ポジティブフィードバックの状態になり発振してしまう。帰還容量を増やすことによって位相余裕を増やしてやることで 発振しないようにすることが出来る。 ということに関してなのですが疑問があります。 ・帰還容量を増やすということは高周波側の成分の帰還量を増やすということに相当するわけですが、 となると帰還容量を増やすと逆に発振を促進することにはならないのでしょうか? ・コンデンサの特性として位相を送らせるというものがありますが、となるとコンデンサを経由して帰還してきた成分は90°遅れており、位相余裕が90°ほどもある周波数帯まで、入力と同じ位相になってしまい、やはり発振を促進してしまうのではないのでしょうか? ・そもそもコンデンサで入力側と出力側を繋ぐということは、帰還量だけではなく、オペアンプを経由せずに素通りしていく成分も増えることになり、この成分はオープンループゲインが0以下の周波数帯でもゲイン0で通過するのではないのでしょうか? この3点いくら考えて調べても答えが見つかりませんでした。 どなたか詳しい方がおられたら教えて下さい。 よろしくお願い致します。

  • コレクタ電流の計算公式の導出方法について

     書物に計算結果は掲載されていたのですが、導出方法が分かりません。教えていただければ幸いです。  題名としては、「代表的な低周波増幅回路」という内容で、計算結果は、「Ic=((R2/(R1+R2)-Ec-Vbe+(Re+(R1R2/(R1+R2))Icbo))/(Re+(R1R2/((R1+R2)(1+Hfe))))」となっていました。  回路図は、コンデンサや入出力のトランス結合などが省略された回路図で、PNPトランジスタのエミッタがグランドに接地されていて、エミッタとグランドの間に抵抗Re。次に、ベースとコレクタの間に抵抗R1。ベースががグランドに接地されていて、ベースとグランドの間に抵抗R2。そして、最後に、コレクタがグランドに接地されていて、コレクタとグランドの間に直流電源Ec。そして、その電源の接続方向は、グランド側に向かって電流が流れる方向です。エミッタ電流はIe。ベース電流はIb。コレクタ電流はIc。ベース・エミッタ間の電圧は、Vbe。ベースからコレクタにトランジスタを通して流れる電流をIcbo。と表記していました。  現在、ソフトウェア技術者なのですが、ハードについても今週から勉強し始めました。上記の数式も入門書にのっていたものなので、本当はカンタンなのでしょうけれど。。。頑張っています。お願いします。