• 締切済み

全ての0≦x≦πにおいて、n→∞のとき、Σ[n=1

全ての0≦x≦πにおいて、n→∞のとき、Σ[n=1→∞]{(-1)^(n-1)/√n}sin(nx)が収束することを詳しく証明して頂きたいです。

みんなの回答

回答No.1

https://okwave.jp/qa/q9831306.html との絡みで示す 先ず x=πの時は、sin(nx) = 0となるので、明らかに収束する。 そうでないとき、まず sin(n(x+π)) = sin(nx) cos(nπ) + cos(nx) sin(nπ) = (-1)^n sin(nx)となる事に注目する。すると、https://okwave.jp/qa/q9831306.html において、Σ[1≦n≦m] (-1)^(n-1)) sin(nx) = -σ_m(x+π) となる。 特に、| Σ[1≦n≦m] (-1)^(n-1)) sin(nx)| ≦ 1/ | sin((x+π)/2) = 1/|cos(x/2)|となる。 従って、Dirichletの級数判定法 https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%AA%E3%82%AF%E3%83%AC%E3%81%AE%E5%88%A4%E5%AE%9A%E6%B3%95#%E4%B8%BB%E5%BC%B5 において、a[n] = 1/√n, b[n] = (-1)^(n-1)) sin(nx) とすれば、適用可能となり、元の級数は収束する。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxが示せません

    宜しくお願いいたしました。 [問]各n∈Nに対し,f_n(x)=nx/(1+nx),x∈[0,1]とする。 数列{f_n}は[0,1]で積分可能関数fには各点収束するが一様収束しない事を示せ。 そしてlim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる事を示せ。 で「lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる」が示せずに困っています。 f(x)= 1/e (x=1の時) 1 (0<x<1の時) 0 (x=0の時) と積分可能関数fが求めました。 でも 0<x<1の時 lim[n→∞]∫[0~1](f(x)-f_n(x)) =lim[n→∞]∫[0~1](1-nx/(1+nx))dx =lim[n→∞]∫[0~1](1/(1+nx))dx =lim[n→∞][-n/(1+nx)^2]^1_0 =lim[n→∞](-n/(1+n^2)+n) となり0になりません。何か勘違いしておりますでしょうか?

  • Σa_nx^nが絶対収束することを示す問題について…

    Σa_nx^nが絶対収束することを示す問題について… Σ(n=0→∞)をべき級数とし、x0(≠0)に対し数列{a_nx0^n}(n=0→∞)が有界であると仮定する。このとき、|x|<|x0|を満たすすべてのxに対してΣ(n=→∞)a_nx^nは絶対収束することを示せ。 という問題で、以下のような証明があるのですが、少しわからないところがあるので教えていただきたいです。 証明 a_nx0^nは有界であるから、 |a_nx0^n|≦M (n=0,1,2,…)となる定数M>0が存在する。 |x|<|x0|とすると、 |a_nx^n|≦M(|x|/|x0|)^n |x|/|x0|<1より、Σ(n=0→∞)M(|x|/|x0|)^nは収束する。 よって、Σa_nx^nは絶対収束する。 // このような証明があったのですが… |x|<|x0|とすると、 |a_nx^n|≦M(|x|/|x0|)^n の部分がよくわかりません。 なぜこのような不等式が成り立つのでしょうか?? 回答よろしくお願いします。

  • lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束

    こんにちは。 [問] lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束する事を示せ。 [証] |a_nx^n|≦|a_nr^n| (∵x<r) 且つ (Σ[n=1..∞]|a_nr^n|=)Σ[n=1..∞]|a_n|r^nが収束。 が言えれば Weierstrassの一様収束の定理「∀x∈I(Iは区間)|a_k(x)|≦c_k且つΣ[k=1..∞]c_kが収束 ⇒Σ[k=1..∞]a_k(x)はIで一様且つ絶対収束する」 が使えて Σ[n=1..∞]a_nx^nは一様収束する。 と示せるのですが「Σ[n=1..∞]|a_n|r^nが収束」がどうしても言えません。 どうすれば「Σ[n=1..∞]|a_n|r^nが収束」が言えますでしょうか? lim[n→∞]|a_n|^(1/n)=1(収束半径は1)からは「Σ[n=1..∞]a_nr^nが収束」しか言えませんよね。

  • Σ[n=1..∞]nx^n/(n^2+1)が(0,1)で一様収束しない事の証明

    よろしくお願いいたします。 Σ[n=1..∞]nx^n/(n^2+1)が(0,1)で一様収束しない事を証明しています。 この和(極限関数)が不連続なら非一様収束である事を示せると思ったのですが この和を求める事ができず途方に暮れてます。 どのようにして非一様収束である事が示せますでしょうか?

  • 3sin(2x) のフーリエ展開

    「3sin(2x) を [-π,π]でフーリエ展開しなさい。」という問題があったのですが、                  ∞ フーリエ級数 (1/2)*a_0 + Σ[ a_n*cos(nx) + b_n*sin(nx) ]                  n = 1 のa_0 とa_n と b_n について、     π a_0 =∫3sin(2x) = 0     -π      π a_n =∫3sin(2x)cos(nx) = 0 (3sin(2x)cos(nx)は偶関数だから0)     -π  と、ここまでだしたのですが、どうしても次の、     π b_n =∫3sin(2x)sin(nx) = 0     -π  を求めることができません。このb_nの求め方を教えてください。 そもそもこれはフーリエ級数で表すことができるのでしょうか?

  • Σ[n=0..∞](-1)^n/nの収束はどうやってわかりますか?

    Σ[n=0..∞](-1)^n/nの収束・発散を吟味して収束ならその和を求めようとしていま す。 実際に判定してみましたら lim[n→∞]|a(n+1)/a(n)|=lim[n→∞]|((-1)^(n+1)/(n+1))/((-1)^n/n)|=lim[n→∞]|-n/(n +1)|=1で判定不能になってしまいました。 こういった場合はどうすればいいんでしょうか? 和についてですがとりあえず 収束という前提で収束値を求めてみましたら log(1+x)=Σ[n=1..∞] {(-1)^{n-1}/n}・x^n x=1代入で,log2 =Σ[n=1..∞] (-1)^(n-1)/nとなりましたがこれで正しいでしょうか?

  • Σ[n=1..∞]√n/(1+nx)^2は[a,∞)(∀a>0)で一様収束するが(0,∞)では一様収束しない事を示せ

    こんにちは。 [問]Σ[n=1..∞]√n/(1+nx)^2は[a,∞)(∀a>0)で一様収束するが(0,∞)では一様収束しない事を示せ。 [証] (i) a≦x<1の時 0<∀ε∈R,∃n_1∈N;(∀x,n_1<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε) (但し,L:=Σ[n=1..∞]√n/(1+nx)^2) (ii) x=1の時 0<∀ε∈R,∃n_2∈N;(∀x,n_2<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε) (iii) x>1の時 0<∀ε∈R,∃n_3∈N;(∀x,n_3<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε) を示し,n_0:=max{n_1,n_2,n_3}と採れば 0<∀ε∈R,∀x∈[a,∞),n_0<n⇒|Σ[k=1..n]√k/(1+kx)^2-L|<ε が言えるのですがn_1,n_2,n_3をどのように採ればいいのかわかりません。 どのように採れますでしょうか? あと、後半については0<∀ε∈R,xを十分小さく取れば∀n∈N⇒Σ[k=1..n]√k/(1+kx)^2>ε を言えばいいのだと思いますがxをどのように小さく採ればいいのでしょうか?

  • x^(n+1)/(n+1)!の極限について

    nを無限までもっていくときのx^(n+1)/(n+1)!ははさみうちの定理を用いてどのように証明すればよいのでしょうか? 回答よろしくお願いします。

  • cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n)

    実数x及び自然数nに対して a_n=cos(x/2)*cos(x/2^2)*・・・・・cos(x/2^n) とする。 (1)2^n*a_n*sin(x/2^n)の値はnと無関係に一定であることを証明せよ。 (2)log|a_n|をxで微分することにより、 Σ(n=2~∞)1/2^n *tan(π/2^n)=1/π であることを証明せよ この問題に取り組んでいます。 (1)で2^n*a_n*sin(x/2^n)の計算を行っていて、いろいろな三角関数の公式を利用してみたのですが全然うまくいきません。「nと無関係」ということはnが消えればいいということだと思うのですが・・・。 (2)はloga_nを微分したところ -1/2 tan(x/2) - 1/2^2 tan(x/2^2) -・・・となったのですがここから証明すべき式に変形するにはどうしたらいいのでしょうか? 回答いただければありがたいです。よろしくお願いします

  • 微積

    微積 σ_n(x)=sinx+・・・+sinnxとおく。 σ_n(x)=[[{sin((n+1)x/2)}]sin(nx/2)]/sin(x/2)となることを詳しく証明して頂きたいです。