• ベストアンサー

ルベーグ積分の問題

fがR上の積分可能関数でΨはξ∈Rの連続関数。 fは可積分のとき以下の式が連続関数である事を示せ

この投稿のマルチメディアは削除されているためご覧いただけません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

Ψはξ∈Rの連続関数『であることを示せ』ですよね。 | Ψ(ξ+η) - Ψ(ξ) | = | ∫ (exp(-ixη) - 1) f(x) exp(-ixξ)x | ≦∫ | exp(-ixη) - 1| |f(x)| dx。 ここで、 | exp(-ixη) - 1| |f(x)| < 2|f(x)| であって、 2|f(x)|は可積分。更に https://okwave.jp/qa/q9775279.html と同じく、fが可積分であるから、|f|はa.e.で <∞ である故、 (exp(-ixη) - 1) → 0 (η→0)であるから、 |exp(-ixη) - 1| |f(x)| はη→0で0に概収束する。 従って Lebesgueの優収束定理によって、∫ | exp(-ixη) - 1| |f(x)| dx は η→0の時0に収束するから、lim(η→0) (Ψ(ξ+η) - Ψ(ξ)) = 0。これはΨが連続であることを示している。

ranranna
質問者

お礼

ありがとうございます

関連するQ&A

  • ルベーグ積分の収束について

    以下の定理について質問があります。 X∈Rとする。 可積分関数の列{f_n(x)}(n≧1)が Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx<∞ をみたせば Σ(n=1~+∞)|f_n(x)|も可積分で Σ(n=1~+∞)∫(積分区間はX)|f_n(x)|dx=∫(積分区間はX)Σ(n=1~+∞)|f_n(x)|dx 以上の定理について、何故n≧1なのでしょうか? Σ(n=-∞~+∞)∫(積分区間はX)|f_n(x)|dx<∞ の場合は成り立たないのですか? どなたか詳しい解説をよろしくお願い致します・・・。

  • 微積分の問題です。

    微積分の問題です。 f(x,y):R^2上の実数値C^1級関数 g(x):R上の実数値C^1級関数 F(x)=int{_0^g(x)}f(x,y)dy x∈R これがC^1級であることを示し、その導関数F'(x)を求めよ。 これはF(x)が連続であることを示して、F(x)の一回微分が一様連続であることを示すんですよね? この問題でR上連続はどのようにしたら示せますか? よろしくお願いします。

  • ルベーグ積分の問題です。至急お願いします!

    お手数だとは思いますが お願いします。 (S,A,μ)を測度空間とする。fを非負可測関数,すなわち任意のx∈Sに対して f(x)≧0で ・∫S(f)dμ=0 (Sは下つきで積分範囲です) を満たすものとする。このときf=0がほとんどいたるところで成り立つことを以下のようにしめせ。 (1)自然数nに対して An={x∈S|f(x)≧1/n}とするとき μ(An)≦n∫S(f)dμ が成立することを示せ。 (2)μ(An)=0であることをしめせ。 (3)μ(∪An)(n≧1)=0が 成り立つことを示せ (4)fはS上ほとんど至る所0であることを示せ。 よろしくお願いします。

  • ルベーグ積分の質問です。

    (1)f,gをE∈Md上で0≦f≦gを満たす可測関数とするとき ∫_E f(x)dx ≦∫_E g(x)dxを示せ。 (2)f,gをE∈Md上でf≦gを満たす可積分関数とするとき ∫_E f(x)dx ≦∫_E g(x)dxを示せ。 これはどのように示せばいいのでしょうか? 定義から0≦s≦f(あるいはg)を満たす単関数を取って、 それのsupを取ったとしても常に不等式が成り立つかどうか、 少しわからないところがあります。

  • ルベーグ積分の問題

    I=(0,∞)、f:I→Iは可積分で∫[I]xf(x)<∞ このとき次の値を求めよ

  • ルベーグ積分の詳しい本

    ルベーグ積分をゼミでやっているのですが (書名がわからないのですが英語の本です。  水田義弘先生の「ルベーグ積分入門」がいちおう訳書らしいです) いままで可測な集合と関数についてやっていて、やっと定義にありついたところで 非負のμ-measurableな関数は、必ずμ-integrableという記述があり 証明しなければいけないのですが、 fの関数の上積分と下積分が等しくなるとき、μ-integrableなので、 上積分≧下積分 と 下積分≦上積分 を示せばいいのですが 下積分≦上積分のほうを示すとき 数学専門の科のゼミではないので自力で証明はしなくていいから 本を探してこい、と言われましたが 大学の図書館に行ってもちんぷんかんぷんでわかりません。 詳しく証明が載っている本をご存知のかた、 教えてください。

  • ルベーグ積分 *可測関数

    次の問題を教えてください! f:R→Rを可測関数とする。g:R→Rを g(x)=f(x) f(x)≧0のとき,     -1  f(x)<0のとき, と定義すると、gも可測になることを示せ。 よろしくお願いします><

  • 導関数の可積分性

    fをC^2級の函数とします。つまり二階導関数まで存在してそれは連続。 さらにfとf"はともに可積分(ルベーグ可積分)とします。 このときf'も可積分になることは示されるものなのでしょうか? 容易に出来る気もするのですが、混乱してできません。 もし万が一反例があるのなら、それを教えて頂きたいです。 あとこれだけの主張でも証明できるような気はするのですが、 fおよび、f"がともに有界(したがってf'も有界になりますが) という付加条件をつける必要があるのならそうしていただけるとありがたいです。 とにかくf'の可積分性がどうしてもいいたいです。

  • ルベーグ積分範囲

    非可測な集合が存在すると仮定とする。この時、関数が可測であることと、全てのa∈Rに対して集合E(f=a)が可測集合であることは同値か同値でないか?

  • Lebesgue積分の問題

    lim_{n→∞}∫_{0}^{n}x^k(1-(x/n))^n dx (kは自然数,{0}^{n}は積分範囲です。) という問題で,積分範囲からnを消して,Lebesgueの収束定理を用いて解くと 考えたのですが,y=x/nと置換するとf_n(y)=n^{k+1}y^k(1-y)^nとなり, |f_n|≦φとなるφが見つけられません。ほかにもいくつか積分範囲からnが消えるように 置換してみたのですが,収束定理が使えるような関数が見つかりません。 別のやり方でやるか,上手くf_nが抑えられるように置換できるものがあるのでしょうか? どなたか解説お願いします。