• ベストアンサー

変数変換の条件を教えてください

お世話になります。 ある2変数関数 u(x, y) に関する2階の偏微分方程式を解こうとしています。 このとき、x, y から s(x, y), t(x,y) に変数変換して解くとすると、s と t が満たす必要のある条件はどのようなものでしょうか? 例えば極端な例ですが、 s(x,y) = t(x,y) = 0 というのは直感的にダメだと思います。 他にも s(x,y) = x + y, t(x,y) = 2x + 2y もs と t で平面を張ることができないのでなんとなくダメなような気がします。 実際、どのような条件を満たす必要があるのでしょうか? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8016/17133)
回答No.1

(s,t)平面から(x,y)平面へのC1級の1対1写像があって、 x=φ(s,t) y=Φ(s,t) とする。 (∂φ/∂s)(∂Φ/∂t)-(∂φ/∂t)(∂Φ/∂s)が考えている領域でのすべてで0でない という条件があれば、有効な変数変換となる。

supertat
質問者

お礼

ありがとうございます! ひらたく言うと「1対1の対応があって逆方向にも変換できること」ということと理解しました。

関連するQ&A

  • 偏微分方程式のラプラス変換による解法

    皆様よろしくお願いいたします。 関数u(x,t)のtに関する偏微分∂u/∂t=u_t、とxに関する2回偏微分∂^2 u/∂x^2=u_xxとおくとき 偏微分方程式 u_t = a*u_xx (aは正の定数) 初期条件:u(x,0) = 0 境界条件:∂u/∂x = u_x = -k (kは正の定数)        lim[x→∞]u(x,0) = 0 をラプラス変換して解を求めようとしてますが、ラプラス変換した式が導けません。 偏微分方程式の解は分かっていているので、解をラプラス変換すると答えは次式になるようです。 U(s,x) = k√a・exp( -x*√(s/a) ) / s^(3/2) どのように導けばこうなるのかご教示ください。 ちなみに偏微分方程式の解は次式になります。(上式に入れて成り立つことを確認済み)  u(x,t)=2k√(at/π)・exp(-x^2/(4at)) - kx・erfc(x/√(4at)) (※erfcはガウスの余誤差関数です) 【途中までやってみた計算経過】 偏微分方程式を→s、x→yへそれぞれラプラス変換して整理すると U(s,y)=ak/{y(y^2-s/a)} となりました。これをy→xへラプラス逆変換すると U(s,x) = -ka^2/s + ( ka^2/(2s) ) exp(-x√(s/a) ) + ( ka^2/(2s) )exp(x√(s/a) ) となり、答えになりません。 しかもこれだと3項目が境界条件lim[x→∞]u(x,0) = 0に従わず∞に発散してしまいます。

  • 変数分離法

    この微分方程式の解を変数分離法によって求めよ X(t)=-X(t)/CR+u(t)/CR ↑ このXの上には小さな黒丸があります ただし、CRは定数、及び u=0(t<0) u=1(t>=0) X(0)=0 このような課題を出題されたので変数微分法に ついても調べてなんとなくは分かったのですが この課題だと変数がtしかなく分離できないように みえて全く手がでません、どうやって解けばいいのでしょうか どなたか教えてくださいm(_ _)m

  • 大学院入試の微分方程式の問題がわかりません!

    問題の式を書くとややこしいので画像を添付しました。 【初期条件: y(0)=y0,y'(0)=y1】 画像の微分方程式について (1) 変数変換 u=( x^2 + 2 )y を行って、uに関する微分方程式を導け (2) (1)で導いた微分方程式を解くことで、元の微分方程式の解yを求めよ (3) 【x→∞】lim y(x)を計算せよ また、【x→-∞】lim y(x)が存在するためのy0,y1の条件を求めよ (1)の変数変換を行うときに uを微分してu' u'' を出し それらをy y' y'' の式に直して代入すればできると思うのですが その変形がややこしすぎて何回やっても間違えてしまいます そこで知識ある皆様のお力をお貸しいただければと思い質問しました。 何卒よろしくお願い致します。

  • 変数関数の微分

    変数関数の微分 この問題をどなたか解いてもらえませんでしょうか? 一晩考えましたがわかりませんでした。。。 関数 z=f(x,y) を以下のように定める。 f(x,y) = xy ― √x^2+y^2 (x,y)≠(0,0)のとき 0 (x,y)=(0,0)のとき (1) 1変数関数f(x,0)のx=0での微分関数と、 1変数関数f(0,x)のy=0での微分係数を求めなさい。 (2) r(x,y)によってxy平面上での原点(0,0)と点(x,y)の距離を表すことにする。 つまりr(x,y)=√x^2+y^2である。 実数t≠0について、(x,y)=(t,t)となる場合について考える。 lim  f(t,t)    ――― t→0 r(t,t) を求めなさい。

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 偏微分方程式の解き方を教えていただけないでしょうか

    偏微分方程式の解き方を教えていただけないでしょうか。 u_t (tの一階微分) = u_xx (xの二階微分) x∈[0,1]のとき、 境界条件 u_x(0,t)=0 、u(1,t)=5t (↑xの一階微分) 初期条件が、 u(x,0)=0 自分で _____________________ du/dt = d^u/dx^2 x∈[0,1] du/dx(0,t)=0 、u(1,t)=5t u(x,0)=0 のとき、変数を分離して、 u=(X,Y) X''=-λXとしました。 X=c1 cos(√(λ) x) +c2 sin(√(λ) x) として、 X’=√(λ) *(ーc1 sin(√(λ) x) +c2 cos(√(λ) x) ) 境界条件をいれると、 X’(0)=√(λ) *(ーc1 sin(√(λ) 0) +c2 cos(√(λ) 0) ) より c2=0 X(1)=c1 cos(√(λ)*1) +c2 sin(√(λ)*1) =5t c1*cos(√(λ)*1) =5t ____________________________ と計算をしてみたのですが、5tの扱い方がわからず、躓いてしまいました。 どのように計算をすればよいか、教えていただけないでしょうか。

  • 変数変換

    変数変換 よく微積分方程式を解く際に「変数変換」を行いますが、この変数変換は 制限なく自由に定義できるのでしょうか? あるいは、ある条件では、 この変換はできない、などの制限はあるのでしょうか? t=cosx t=1/x t=x^2 t=exp(x) など

  • 積分の中での変数変換

    はじめまして。 積分計算の途中の変数変換について質問させてください。 g(x,t)=∫[0,t] f(x+s-t,s)ds・・・(1) ∫[0,t]g(x+t-s,s)ds・・・(2) を計算しようとしているのですが、なかなかうまくいきません。 回答としましては、 1/2(∫[0,t]{∫[x-(t-s),x+(t-s)]f(y,s)dy}ds) となっているのですが、どうしても、2つ目のインテグラルの範囲を回答のようにできません。 ちなみに、(1)より g(x+t-s,s)=∫[0,s] f(x+t-s+u-s,u)du として僕は計算しているのですが、これ自体がそもそもだめなのでしょうか? どうかよろしくお願いします。

  • 変数変換?

    まずx^2y''+xy'-y=0という問いがあるのですがy1=xで、y=y1zとおきyが解であるときのzの満たす方程式とはどういうことなのでしょうか?またx^2y"+4xy'+2y=1,y(1)=y'(1)=0という問いで変数変換を考え(d^2y/dt^2)をy"=(d^2y/dx^2),y=(dy/dx),(dy/dt)で表し、元の方程式に代入してy(t)の満たす方程式にしたのですがそこからどう解けばいいのかわかりません。また元の方程式を解く場合(変数変換をしない場合?)と上記の作業をした場合では解き方、解等違ってくるのでしょうか?どうかご教授お願いします。

  • 領域の変換

    (u,v) = (x+y,xy)で定義されるR^2上の変換Tの像T(R^2)がどのような集合であるか以下の手順で調べよ。 (1)(1,-2)はT(R^2)に属している (2)(1,2)はT(R^2)に属していない (3)点(u,v)がT(R^2)に属しているための条件をもとめよ。 (4)(3)をuv平面上で図示せよ との問題です (1),(2)の問題は変換の問題?? (1)は x + y = 1 x*y = -2 の連立方程式を求めると解をもつので(1,-2)はT(R^2)に属している? (2)も(1)と同じで x + y = 1 x*y = 2 の連立方程式を求めると解をもたないので(1,2)はT(R^2)に属していない? ということなのでしょうか?