• 締切済み

中線定理の応用についての問題です

中線定理の応用についての問題です 平行四辺形OABCはOA=BC=1,OC=AB=r,∠AOC=θ を満たす。ただし、r>0かつ0°<θ<180°とする。 2)θが0°<θ<180°の範囲を動くとき OB+ACの最大値とそのときのθの値を求めよ。 この解答が、 (OB+AC)^2+(OB-AC)^2=2(OB^2+AC^2) よってOB+ACはOB=ACのとき、すなわち四角形OABCが長方形のとき最大となる と書いてあるのですが、まず、どうしてこのように立式したのかと、式の意味がわかりません。そして、なぜOB=ACの時が最大なのかを詳しく教えてください!

みんなの回答

  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.1

平行四辺形OABCは |OA|=|BC|=1, |OC|=|AB|=r, ∠AOC=θ を満たす。 ただし、r>0かつ0°<θ<180°とする。 θが0°<θ<180°の範囲を動くとき |OB|^2=(1+rcosθ)^2+(rsinθ)^2=1+2rcosθ+r^2 |AC|^2=(1-rcosθ)^2+(rsinθ)^2=1-2rcosθ+r^2 だから |OB|^2+|AC|^2=2(1+r^2) はθに関係しないから (|OB|+|AC|)^2+(|OB|-|AC|)^2=2(|OB|^2+|AC|^2)=4(1+r^2) はθに関係しない 両辺から(|OB|+|AC|)^2を引くと 0≦(|OB|-|AC|)^2=4(1+r^2)-(|OB|+|AC|)^2 両辺に(|OB|+|AC|)^2を加えると (|OB|+|AC|)^2≦4(1+r^2) 両辺を1/2乗すると |OB|+|AC|≦2√(1+r^2) だから |OB|+|AC|の最大値は |OB|+|AC|=2√(1+r^2) となる そのとき (|OB|+|AC|)^2=4(1+r^2)=2(|OB|^2+|AC|^2) だから (|OB|-|AC|)^2=2(|OB|^2+|AC|^2)-(|OB|+|AC|)^2=0 だから |OB|=|AC|の時最大となる |OB|^2=1+2rcosθ+r^2=|AC|^2=1-2rcosθ+r^2 cosθ=0 θ=π/2 四角形OABCが長方形のとき最大となる

関連するQ&A

  • ベクトル 平行四辺形

    平行四辺形OABCにおいて、 OA↑・OB↑=OB↑・OC↑=2、OA↑・OC↑=-2 が成り立っているとき、 (1)|OA↑| |OB↑| |OC↑| を求めよ。 (2)∠ABCを求めよ という問題何ですが、 自分で考えたり、参考書見たりしたんですが全くわかりません。 テスト前でかなり焦っています。 どなたかわかりませんか?

  • 辺の長さが2の正四面体OABCを・・・

    1辺の長さが2の正四面体OABCを考える。(以下ベクトル省きます。) △ABCの面積は√3 OG=1/3OA + I/3OB + 1/3OC・・・・(1) (3)(1)式と|OA|=|OB|=|OC|=□、及びOA・OB=OB・OC=OC・OA=□ であることを用いると、 |OG|=□ OG・AB=OG・AC=□ が成り立つことが分かる。 (4)(2)式より正四面体OABCの体積は□となる。 □の部分をお願いします。

  • 四面体 垂線の足

    四面体OABCは、OA=4、OB=5、OC=3、∠AOB=90°、∠AOC=∠BOC= 60°を満たす。 (1)点CAから△OABに下ろした垂線と△OABとの交点をHとする。ベクトル →CHを→OA、→OB、→OCを用いて表せ。 (2)四面体OABCの体積を求めよ。

  • ベクトルの質問です。

    平行四辺形OABCにおいて、OA↑=a↑、OC↑=c↑とする。次の直線のベクトル方程式を求めよ。ただし媒介変数をtとせよ。 問 点Bを通り、直線ACに平行な直線 これがなぜp↑=OB↑+tAC↑になるのでしょうか。 解答お願いします。

  • 数学 空間ベクトルについて

    数学 空間ベクトルの問題について 四面体OABCは OA=4 OB=5 OC=3 ∠AOB=90度、∠AOC=∠BOC=60度を満たしている。 (1)点Cから三角形OABに下ろした垂線と、三角形OABとの交点をHとする。 ベクトルCHをベクトルOA、ベクトルOB、ベクトルOCを用いてあらわせ。 (2)四面体OABCの体積を求めよ。 この二問なのですが解き方と解答がわからず困ってます。 なので途中式と解答をお願いします。

  • ベクトル(数B)の問題教えてください

     平行四辺形OABCの辺OAを1:3に内分する点をD,対角線ACと線分DBの交点をP,直線OPと辺ABとの交点をQとする。  OPベクトルをOAベクトル、OCベクトルを用いて表せ。

  • 球面三角形の正弦定理

    趣味で数学をしようと思っています。球面三角形の正弦定理の証明が理解できないのでネットでも調べたのですが分かりません。似たような質問があったのですがその途中が理解不能です。 直角球面三角形BAC(頂点B、底辺AC、の直角球面三角形)において、C=π/2 とし、a<π/2, b<π/2 の場合について考えます。 Oを球の中心とし、線分OB=1、線分OC上に、BD⊥OC、線分OA上に、DE⊥OA とするとCが直角で有る事から、BD⊥平面AOC 従って三垂線の定理により、BE⊥OA ∴∠BED=∠A とあります。 しかし、∠BED=∠Aがなぜ導き出せるのかどうしても分かりません。 自明なことのようですが教えてください。

  • 大学入試過去問(ベクトル)

    四面体OABCは、OA=4、OB=5、OC=3、∠AOB=90°、∠AOC=∠BOC=60°を満たしている。 (1)点Cから△OABに下ろした垂線と△OABとの交点をHとする。CH↑をOA↑、OB↑ 、OC↑を用いて表せ。 (2)四面体OABCの体積を求めよ。 大学入試の過去問ですが、解答がなく、答え合わせできなくて困っています。明日までに答え合わせして塾に提出しないといけないので早めにお願いします!

  • 四辺形ABCDの対角線 ピタゴラスの定理

    定理の言い換えがわかりません。 四辺形ABCDの対角線AC,BDの交点をOとし、AC,BDの中点M,Nとする。点M,Nを通ってそれぞれBD,ACに平行に引いた直線の交点をPとすると、 △OAB+△OCD=2△PBCである。・・・(1)この定理に条件を加えて、AC⊥BD,OB=OC,OA=ODとすると、△OAB≡△OCDであるから、△OAB=△PBCである。また、点Pは△ABCの外心となる・・・(2) これから、どんな定理が得られるか?が問題です。 答えは「直角2等辺三角形OBCの斜辺BCとし、辺OCのOをこえた延長上の1点を Aとし、△ABCの外心をPとすると、△OAB=△PBCである。」が答えです。 わかることは、AC⊥BD,OB=OC,から直角2等辺三角形OBCの斜辺BCということぐらいです。△ABCの外心をPとすると以後が、どの条件から導かれるのかがわかりません。(1)、(2)どちらの条件かも区別がつきません。 なぜ答えのような定理になるか、教えてくださいおねがいします。

  • 空間ベクトル

    四面体OABCにおいて、∠AOB=∠AOC=60°、∠BOC=90°、OA=1とする。 頂点Oから平面ABCに下ろした垂線が、△ABCの重心Gを通るとき、辺OB,OCの長さを求めよ。 という問題です。 V(OG)=1/3{V(OA)+V(OB)+V(OC)} 点Gは平面ABC上の点より V(AG)=sV(AB)+tV(AC)とおける 整理して V(OG)=(1-s-t)V(OA)+sV(OB)+tV(OC) V(OA),V(OB),V(OC)}は1次独立より、係数比較から s=1/3,t=1/3 ∴V(AG)=1/3{V(AB)+V(AC)} としましたが、辺OB,OCの長さには行き着きそうもありません。 どなたか教えて下さい。