• 締切済み

支給お願いします。

拡散方程式 (du/dt)=D(d^2u/dt^2) (D>0) 境界条件 u(x,t)=u(x+2a,t) 初期条件 u(x,0)=f(x) 解ける方、よろしくお願いします。

みんなの回答

  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.1

微分方程式 (du/dt)=D(d^2u/dt^2)(D>0) の解は u=Ce^{t/D}+B とすれば du/dt=Ce^{t/D}/D d^2u/dt^2=Ce^{t/D}/D^2 D(d^2u/dt^2)=Ce^{t/D}/D=du/dt だから解は1変数tだけの関数 u=Ce^{t/D}+B となる u(x,0)=C+B=f(x) だから u(x,t)=Ce^{t/D}+f(x)-C =u(x+2a,t)=Ce^{t/D}+f(x+2a)-C だから f(x)=f(x+2a) の条件で u(x,t)=Ce^{t/D}+f(x)-C となる

関連するQ&A

  • 二次元拡散方程式の一般解が求まりません

    すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(x,y,t)の位置(x,y)と時間(t)のみに依存する関数があり、 拡散方程式 du/dt=D*(d^2u/dx^2+d^2u/dy^2)  (dは本来は偏微分のパーシャルdです。Dは定数) 一辺の長さが1.0の正方形を考えています。(0<x<1 , 0<y<1) 境界条件は、u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(1.0,y,t)=0.0 , u(x,1.0,t)=0.0 です。 初期条件は u(x,y,t)=10.0 です。 すみませんができれば解のみではなく方針までお答えいただけると幸いです。よろしくお願いします。

  • 拡散方程式の一般解が求まりません

    すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(y,t)の位置(y)と時間(t)のみに依存する関数があり、 拡散方程式 du/dt=D*(d^2u/dy^2)  (dは本来は偏微分のパーシャルdです。Dは定数) 境界条件は、 u(±h,t)=Ucosωt (h,ωは定数) となっています。これだけの条件では解けないのでしょうか??すみませんができれば解のみではなく方針までお答えいただけると幸いです。よろしくお願いします。

  • 二次元拡散方程式の一般解が求まりません

    二次元拡散方程式の一般解が求まりません すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(x,y,t)の位置(x,y)と時間(t)のみに依存する関数があり、 拡散方程式 ∂u/∂t=D*(∂^2u/∂x^2+∂^2u/dy^2)  (Dは定数) (0<x<a , 0<y<b) 境界条件は、u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=0.0 ,u(x,b,t)=0.0 です。 初期条件は u(x,y,0)=f(x,y) です。 変数分離 u(x,y,t)=X(x)Y(y)T(t) 代入後uで両辺を割る T´/(D*T)=X´´/X+Y´´/Y 後はD*X´´/X=α、D*Y´´/Y=β (α、β、kは定数)ここで,k=-(α+β)とおく。 の3つの微分方程式を解いて初期条件、境界条件を用いて定数を決定します。 X(x)=Acos√αx+Bsin√αx Y(y)=Ccos√βy+Dsin√βy とおいて、境界条件を代入し X(0)=X(a)=0 Y(0)=Y(b)=0 X(a)=Bsin√αa=0 α=(nπ/a)^2 (n=1,2,・・・) Y(b)=Dsin√βb=0 β=(nπ/b)^2 (n=1,2,・・・) 境界条件u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=0.0 ,u(x,b,t)=0.0がときのものは 一般解を求められました。 次に, 境界条件u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=1.0 ,u(x,b,t)=0.0のときの一般解を求めたいのですが、上手く出来ません。 X(x)=Acos√αx+Bsin√αx Y(y)=Ccos√βy+Dsin√βy とおいて、境界条件を代入し X(0)=0 X(a)=1 Y(0)=Y(b)=0 X(a)=Bsin√αa=1 Y(b)=Dsin√βb=0 β=(nπ/b)^2 (n=1,2,・・・) X(a)=Bsin√αa=1をどう解けばいいのか分かりません。 ご教授お願いします。

  • 偏微分方程式の問題です。

    aを定数とするとき、次の偏微分方程式を解け。 du/dt+a・du/dt=0 ただし、初期条件を以下とする。 u(x,0)=bx^-x (b:定数) (ヒント) u(x,t)=g(x)h(t)と変数分離できることを仮定してよい。 解答・解説お願いします。 考え方の提示のみではなく、答えまでよろしくお願いいたします。

  • フィックの第2法則のラプラス変換による解の求め方

    1次元で、半無限方向に食塩が拡散する現象を考え、時間t、位置x、濃度C、拡散係数Dとして、フィックの第2法則 ∂C/∂t=D×∂^2C/∂x^2 を解く問題です。 食塩部分は常に濃度Cs、無限遠方では濃度は0であることから、 初期条件、 C(x,0)=C∞=0 境界条件、 C(0,t)=Cs C(∞,t)=C∞=0 です。  課題の解法では、ここでθ=C-C∞とおき、拡散方程式を、 ∂θ/∂t=D×∂^2θ/∂x^2 と変形し、初期条件、 θ(x,0)=0 境界条件、 θ(0,t)=Cs θ(∞,t)=0 としています。ここでラプラス変換を行い、  ∞ ∫ e^-pt×θ(x,t)dt=Θ(x,p)  0 とし、拡散方程式を変換するのですが、左辺はpΘ(x,p)になるのは分かったのですが、右辺の変換の仕方がわかりません。ヒントによると、          ∞ D×∂^2/∂x^2∫□dt=□          0 になるそうですが、□に入る式が分かりません。お願いします。

  • 偏微分方程式の解き方を教えていただけないでしょうか

    偏微分方程式の解き方を教えていただけないでしょうか。 u_t (tの一階微分) = u_xx (xの二階微分) x∈[0,1]のとき、 境界条件 u_x(0,t)=0 、u(1,t)=5t (↑xの一階微分) 初期条件が、 u(x,0)=0 自分で _____________________ du/dt = d^u/dx^2 x∈[0,1] du/dx(0,t)=0 、u(1,t)=5t u(x,0)=0 のとき、変数を分離して、 u=(X,Y) X''=-λXとしました。 X=c1 cos(√(λ) x) +c2 sin(√(λ) x) として、 X’=√(λ) *(ーc1 sin(√(λ) x) +c2 cos(√(λ) x) ) 境界条件をいれると、 X’(0)=√(λ) *(ーc1 sin(√(λ) 0) +c2 cos(√(λ) 0) ) より c2=0 X(1)=c1 cos(√(λ)*1) +c2 sin(√(λ)*1) =5t c1*cos(√(λ)*1) =5t ____________________________ と計算をしてみたのですが、5tの扱い方がわからず、躓いてしまいました。 どのように計算をすればよいか、教えていただけないでしょうか。

  • 大学数学の方程式の質問

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 大学数学の方程式

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 東京書籍 数III p166 章末問題 9 

    問題文 F(x)= ∫ [x,2x] logt/t^2 dt (x>0) (1)F'(x)を求めよ 解答 F(x)=∫ [0,2x] logt/t^2 dt - ∫ [0,x] logt/t^2 dt u=2x とすると、du/dx=2 までは理解したのですが、その先が分かりません。 F'(x)=d/dx ∫ [0,2x] logt/t^2 dt - logx/x^2 =2d/du ∫ [0,u] logt/t^2 dt - logx/x^2 =2logu/u^2 - logx/x^2 =2log2x/4x^2 - logx/x^2 =(log2-logx)/2x^2 となるようなのです。 なぜ F'(x)=log2x/(2x)^2 - logx/x^2 とならないのでしょうか? 解説、お願いします

  • 反応拡散方程式の定常解について

    反応拡散方程式 dU/dt = f(U,V)+ΔU dV/dt = g(U,V)+ΔV (fとgは非線形な関数でΔは空間1次元のラプラシアン) には、条件が整えば空間的に非一様な定常解(時間変化しない解) が存在します。 このような空間非一様性を満たす定常解 0 = f(U,V)+ΔU 0 = g(U,V)+ΔV をノイマン境界条件のもとで数値的に求めようとして、 ラプラシアン(Δ)を離散化した次の連立方程式 0 = f( U<i>, V<i> ) + [U<i+1>-2U<i>+U<i-1>]/h^2 0 = g( U<i>, V<i> ) + [V<i+1>-2V<i>+V<i-1>]/h^2 (i=0~N) をニュートン法で解いてみました。 結果、 初期値(u(x)とv(x)の形)によってはまぐれで空間非一様な定常解らしき状態に収束することがあるのですが、ほとんどの場合発散してしまうか、一様な解(u(x)=0,v(x)=0)に収束してしまいます。1000回ほどランダムに初期値を変えて試行したところ空間非一様<らしき>解に収束したのはたった数回でした。また、離散格子点を多くとった場合(例えばN=200)には、まったく収束しなくなりました。直感では、初期値さえうまくとれば収束しそうな気がしたのですが、、 質問:  上の反応拡散方程式のような非線形連立偏微分方程式の定常解を、数値的に求める手段というのはあるのでしょうか? アドバイスよろしくお願いします。