• ベストアンサー

dθ/dxの求め方について

x=rcosθ y=rsinθ とします (1)dθ/dx=1/(dx/dθ)=-1/rsinθ (2)y/x=tanθより (-y/x^2)*dx=(1/(cosθ)^2)*dθより dθ/dx=(-y/x^2)*(cosθ)^2 =((-rsinθ)/(r^2(cosθ)^2))*(cosθ)^2 =-sinθ/r というように結果が違ってしまいます… これはなぜでしょうか…

質問者が選んだベストアンサー

  • ベストアンサー
  • Knotopolog
  • ベストアンサー率50% (564/1107)
回答No.1

4行目の式がまちがっています. yが微分されていません.yが定数あつかいされています.

triiiiigu
質問者

お礼

ありがとうございました。 補足したものの検討はずれなことを書いてしまったので打ち切ります。 もう少し考えてから再度質問しますのでまた答えてくだされば幸いです。

triiiiigu
質問者

補足

なるほど…ありがとうございます では x=rcosθ y=rsinθ とします (1)∂θ/∂x=1/(∂x/∂θ)=-1/rsinθ (2)y/x=tanθより (-y/x^2)*∂x=(1/(cosθ)^2)*∂θより ∂θ/∂x=(-y/x^2)*(cosθ)^2 =((-rsinθ)/(r^2(cosθ)^2))*(cosθ)^2 =-sinθ/r としたときはどうでしょうか?

関連するQ&A

  • r^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0)についての問題

    検索をさせていただいたのですが、なかなか 似たような問題が出てこなかったので質問させていただきます。 大学院の問題なのですが、いまいちわかりません…。 r^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0) (1)dr/dθを求めよ。 自分なりに出した答えが r(θ) = √cos2θ (∵ r≧0) dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)     = -1/√sin2θ     = - √sin2θ/sin2θ  ←有利化 (2)dr/dθ = 0となるθの値と、それに対応するr(θ)を求めよ。 dr/dθ = 0となるのはθ = 0のときで r(0) = √cos0 = 1 (3)直行座標(x,y)で表したときに、dy/dx = 0となるθの値と、それに対応するr(θ)を求めよ。 x = rcosθ、y = rsinθ とおき、 dx/dθ = -rsinθ dy/dθ = rcosθ よって dy/dx = -cosθ/sinθ = -1/tanθ と、ここでつまってしまいました。。。 (1)、(2)も自信がありません…。 どなたかわかる人がいましたら、 ご教授いただけると非情に助かります。 よろしく御願いします。

  • 3重積分について

    ∫(D) |x| + |y| + |z| (dx)^3 領域D:{x^2 + y^2 + z^2≦a^2, a>0}という問題で、解が(3πa^4)/2になるはずなのですが、極座標に変換する段階でいまいち分かりません。自分なりにやると、 x=rsinθcosφ, y=rsinθsinφ, z=rcosθ (0≦r≦a, 0≦θ≦π, 0≦φ≦2π)として、ヤコビアンがr^2 sinθになり、 ∫(D) |x| + |y| + |z| (dx)^3 =∫[0→2π]dφ∫[0→π]dθ∫[0→a]dr (r^2 sinθ)(rsinθcosφ+rsinθsinφ+rcosθ) このようになるのですが、自分がこれを解いていくと違った解になり、正解にたどり着きません。この変換が間違っているのでしょうか?単に途中の計算が間違っているのでしょうか? よろしくおねがいします。

  • tan^2θについて

    x=rsinθcosΦ y=rsinθsinΦ z=rcosθ とします。 (x^2+y^2)/z^2=tan^2θ θ=tan^(-1)((x^2+y^2)^(1/2)/z) となっていました。 θ=tan^(-1)(-(x^2+y^2)^(1/2)/z) ということはありえないんでしょうか?

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。

  • 球面座標表示での計算

    x=rsinθcosφ y=rsinθsinφ z=rcosθ と置いたとき以下のように計算するのですが θの部分微分のところで なぜrが分母にくるのかわかりません。 初歩的な計算だと思います。 どなたか、ご指摘くださる方よろしくお願いします。 ∂/∂x=∂/∂r・∂r/∂x+∂/∂θ・∂θ/∂x+∂/∂φ・∂φ/∂x ∂/∂y=∂/∂r・∂r/∂y+∂/∂θ・∂θ/∂y+∂/∂φ・∂φ/∂y ∂/∂z=∂/∂r・∂r/∂z+∂/∂θ・∂θ/∂z+∂/∂φ・∂φ/∂z r^2=x^2+y^2+z^2 tanφ=y/x tan^2θ=(x^2+y^2)/z^2 から ∂r/∂x=sinθcosφ ∂r/∂y=sinθsinφ ∂r/∂z=cosθ ∂θ/∂x=cosθcosφ/r    ←ここ  ∂θ/∂y=cosθsinφ/r    ←ここ ∂θ/∂z=-sinθ/r       ←ここ ∂φ/∂x=-sinφ/rsinθ ∂φ/∂y=cosφ/rsinθ ∂φ/∂z=0 等が求まる。 ∂/∂x=sinθcosφ∂/∂r+(cosθcosφ/r)∂/∂θー(sinφ/rsinθ)∂/∂φ ∂/∂y=sinθcosφ∂/∂r+(cosθsinφ/r)∂/∂θ+(cosφ/rsinθ)∂/∂φ ∂/∂z=cosθ∂/∂rー(sinθ/r)∂/∂θ これを ∇=i∂/∂x+j∂/∂y+k∂/∂z に代入して求めます。 つぎの式も丹念に計算していくと ∇^2=∂^2/∂r^2+(2/r)∂/∂r      +(1/r^2sinθ)∂(sinθ∂/∂θ)/∂θ      +(1/rsinθ)^2・∂^2/∂φ^2 注意深く計算して行って下さい。途中間違えたら台無しです。

  • 円の面積:πr^2の計算。なぜこうなるかがわからないです

    いつもお世話になります。初歩的な質問で申し訳ありませんが、ひとつどうしても分からないので教えてください。 今読んでいる本で、円の面積を計算する方法が書いてある箇所があるのですが、なぜそうなるかがわかりません。 半径rの円:x^2+y^2=r^2があり、第1象限に点P(x,y)がとってあります。 円の面積Sは、S=4∫(0からr)√(r^2-x^2)dxとなる。ここまでは良いのですがわからないのは以下からです。 --------------------------------------------------- ここでx=rcosθとおくと、dx=rsinθdθです。 したがって、x=0のときθ=0、x=rのときθ=π/2です。 さらに、r^2-x^2=r^2-r^2*(sinθ)^2=r^2*(cosθ)^2 よって、√(r^2-x^2)=rcosθ (その後積分の計算で S=4r^2・∫(0からπ/2)(cosθ)^2 dθ とされ、 最終的にはπr^2が導かれています。) --------------------------------------------------- 質問1:1行目でなぜ「dx=rsinθ」なのでしょうか。私は「dx=-rsinθdθ」かと思いました。 質問2:2行目ではなぜ「x=0のときθ=0」なのでしょうか。私は、「x=0のときθ=π/2で、x=rのときθ=0」かと思いました。 質問3:4行目ではなぜ、「√(r^2-x^2)=rcosθ」になるのでしょうか。私は「右辺=rsinθ」だと思いました。 質問4:積分の式もなぜこうなるのかわかりません。冒頭でdx=rsinθと言ってるのに、ここではdx=rcosθを代入してますしなぜですか? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 私が自分なりに解いた方法では、S=4r^2・∫(0からπ/2) (sinθ)^2 dθとなり、πr^2は導けたのですが、上で書きました本の内容の意味がわからず気持ち悪い状態です。 本は青バックスの「πの不思議」p.49~50です。 私の勘違いかも知れかもしれませんがすっきりしないので、お詳しい方ご教示ください。

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 2重積分

    ∬xdx(範囲は、x^2+y^2≦2yかつy≦x)を計算せよ x=rcosθ、y=rsinθとおいて 範囲は0≦r≦cosθ,0≦θ≦π/4 =∬rcosθ*rdrdθ =(∫「0→cosθ」r^2dr)(∫「0→π/4」cosθdθ) =1/3[r^3]「0→cosθ」*[sinθ]「0→π/4」 ここで行き詰まりその後どうして良いか分かりません アドバイスお願いします。

  • 合成関数の微分

    大学1年のものです。 次のような問題に出くわしました。 Z=f(x,y) x=rcosθ y=rsinθのとき次の関係式を示せ。 Zxx+Zyy=Zrr+(1/r)Zr+{1/(r^2)}Zθθ ここで、 Zx=∂Z/∂x  Zxx=∂^2Z/∂x^2 です。(r、θについても同様) まず、 Zr=Zx・cosθ+Zy・sinθ …(1) Zθ=-Zx・rsinθ+Zy・rcosθ …(2) ですよね? ここで疑問がわきました。 (2)でrsinθ=x、rcosθ=yと置き換えるのと置き換えないのとでは、Zθθが違う思います。 そこで教科書の答えを見ると、 置き換えて微分したほうの答えが書いてあったので、 置き換えて計算しないとダメなのかと思ったのですが、 (1)においてはcosθ=x/r、sinθ=y/rと置き換えないのでしょうか? というか、教科書には置き換えないほうの結果が載っていました。 自分でもcosθは置き換えといて、置き換えた後のrがそのままなのはおかしいと思いますが、なぜrcosθを置き換えてcosθを置き換えないのかがわかりません。 質問を要約すると なぜrcosθを置き換えてcosθを置き換えないのか? ということです。 ちなみに教科書に載っていた答えは、 Zrr=Zxx(cosθ)^2+Zyy(sinθ)^2+2Zxy・sinθcosθ Zθθ=Zxx・r^2(sinθ)^2+Zyy・r^2(cosθ)^2-2Zxy・r^2・sinθcosθ-(Zx・rcosθ+Zy・rsinθ) です。 非常にわかりにくい文章だとは思いますが、教えていただければ助かります。

  • 極座標と直交座標

    「極座標で表したときの(r,θ)=(√5+1,Π/10)なる点を直交座標(x,y)であらわせ。ただし、cos,sin,tanなどの三角関数記号を用いずにあらわすこと」という問題です。 がんばって解いてみました。 x=rcosθ,y=rsinθより、 x=(√5+1)cos(Π/10),y=(√5+1)sin(Π/10) ここでsin(Π/10)=(√5-1)/4 なので(計算済み) y=1 さらにcos(Π/10)=)=√(10+2√5)なので(これも計算済み)  x=5√2+√(10√5)+√(10+2√5) ???? yはともかく、xはこんな変な値になってしまってよいのでしょうか?