• ベストアンサー

ベルヌーイ数

stomachmanの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.6

ホントだ。z/(e^z - 1) の一階微分でz=0にしたら0/0になっちゃいますね。失礼失礼。 この場合、定義の式の左辺をそのまんま微分してやれば宜しいでしょう。 d(1/f(z))/dz= -f'(z)/(f(z)^2) においてz=0にすれば-1/2という答が得られます。 一般に、収束性については、様子が見えてくるまでは後回しにするのが良さそうですね。

taropoo
質問者

補足

物分りが悪くてすみません。3点分かりません。 1点目、 d(1/f(z))/dz= -f'(z)/(f(z)^2) =(e^z - 1 -ze^z)/(e^z - 1)^2 となったのですが、ここでもz=0を代入すると0/0となります。 色々式変形を試してみたのですがlim(z→0)f(z) = 1の時のように上手く行きません。 -1/2が出てくるまでの過程を教えてください。 2点目、 d(1/f(z))/dzが分かると何が分かるのですか? d(1/f(z))/dz = 1/(d(f(z))/dz)が成り立つって訳でもないですよね。 どうB1に結びつくのか教えてください。 3点目、 B2についてはどうやるんですか? d(1/f'(x))/dz = -f''(z)/(f'(z)^2) とかを使うのですか?(これは上の2点が分かれば分かるのかな?) 何分物分りが悪いもので、出来れば出来るだけ詳しく、途中の式の変遷なども省略せずに ご教授頂けると助かります。 お手数をおかけしますがよろしくお願いします。

関連するQ&A

  • 留数を求める問題

    留数を求める問題 行き詰った問題が数問あるので質問させていただきます;; 有理型関数の極での留数を求める問題です。 (1) f(z)=1/(z^2+a^2)^2  z=±iaで1位の極を持つ  Res[f(z),ia]=lim[z→ia]1/(n-1)! d^(n-1)/dz^(n-1)*(z-ia)^n/(z^2+a^2)^n  =lim[z→ia]1/(n-1)! d^(n-1)/dz^(n-1)*1/(z+ia)^n  ここまでやりましたがnを含んだ微分で詰まってしまいました。  ここまで合っていますか? (2) f(z)=πcot(πz)  f(z)=π/tan(πz) で  z=nで1位(?)の極を持つ。とすると、  Res[f(z),n]=lim[z→n] π(z-n)/tan(πZ)  となり、これ以降の計算がわかりません・・・;; (3) f(z)=z^2/(z^4+a^4)  これに関しては極も求められません(泣) 以上の3問がどうしても解けませんでした。 解法を教えていただけると助かります。 どうかよろしくお願いします。困っています;;     

  • 数列の証明について

    数列の証明について質問です。 lim(n→∞){2(a_n+1)-a_n}=A・・・(1) ならば、lim(n→∞)a_n=Aが成り立つことを示せという問題です。 私はlim(n→∞)a_n=Bとおいて lim(n→∞)a_n+1=lim(n→∞)a_n という事を使い、 (1)の左辺がBとなることより B=Aを示しました。 しかし、私の回答では、lim(n→∞)a_nが収束する事を証明してないので、lim(n→∞)a_n=Bと置くのはダメみたいです。 (1)が成り立つとき、lim(n→∞)a_nが収束することの証明をお願いします。

  • 対数vsべき乗

    (1) lim(n→∞) n^k e^(-n) = 0 (kは任意の自然数) の証明に関して本に、     e=(1+h) (h>0) だから     e^n = Σ(j=0~n) nCj h^j > nC(k+1) h^(k+1)    …(i) 従ってうんぬんと書いてあったのですが、(i)の不等号が何故成り立つのか分かりません。 kに対しあるn0があってn>n0に関して(i)が成り立つという事を省略して書いているのかなと想像してるのですが そこで止まってしまっています。 (i)の不等号が成り立つ所以を教えてください。 (2) lim(n→∞) n^2/a^n この極限値およびその導き方を教えてください。 (ひょっとしたら(1)の応用で行けるのかな?) (3) lim(n→∞) a^n/n! これに関しては全く糸口が見えません。 以上3題、よろしくお願いします。

  • 至急、集合と写像

    至急、集合と写像 明日テストなのですが、教科書に解説が乗っていない問題のため質問させて下さい。 【1】 各n∈Nに対してEn⊂En+1であれば lim(n→∞)En=∪(n=1,∞)En 各n∈Nに対してEn⊃En+1であれば lim(n→∞)En=∩(n=1,∞)En が成り立つことを示せ。 【2】 lim(n→∞)An, lim(n→∞)Bn がともに存在すれば次の等式が成り立つことを示せ。 (1) lim(n→∞)(An∪Bn)=lim(n→∞)An∪lim(n→∞)Bn (2) lim(n→∞)(An∩Bn)=lim(n→∞)An∩lim(n→∞)Bn 【3】 A,Bを集合とし、各k∈Nに対してE2k=A, E2k-1=Bとおく。次式が成り立つことを示せ。 lim(n→∞)supEn=A∪B lim(n→∞)infEn=A∩B 自分なりに色々考えたのですが、解答がないためとても困っています。 どうか宜しくお願いします。

  • 指数法則の証明

    指数法則e^(z_1)・e^(z_2)=e^(z_1+z_2)を {(z_1)^n/n!}+{(z_1)^(n-1)/(n-1)!}{(z_2)/1!}+…+{(z_2)^n/n!}=(1/n!){(z_1)+(z_2)}^n が成り立つことを利用して証明する。 解答では、 e^(z_1)・e^(z_2) ={Σ[k=0,∞]((z_1)^k)/k!})={Σ[l=0,∞]((z_2)^l)/l!} =Σ[n=0,∞]{Σ[j=0,n]{(z_1)^(n-j)/(n-j)!}{(z_2)^j/j!} =Σ[n=0,∞]{(1/n!)Σ[j=0,n](n)(j){(z_1)^(n-j)}{(z_2)^j} =Σ[n=0,∞](1/n!){(z_1)+(z_2)}^n =e^{(z_1)+(z_2)} (4行目の(n)(j)は縦に書かれています。分かりにくくてすみません。) 解答の2行目はe^zの展開式なのは分かるのですが、2行目から3行目、3行目から4行目がどうして、こういう変形になるのか、分からず困っています。 ご教授お願い致します。

  • ネイピア数(e)のプログラム

    テイラー展開によってネイピア数の近似値を求める プログラミングが全くわかりません。 e = 2.71828 18284 59045 23536 02874 71352 … を計算したいのですが。 #include <stdio.h> #include <math.h> int kaijou(int p) { int cnt; int val=1; for(cnt=1 ; cnt<=p ; cnt++){ val=val*cnt; } return(val); } double napier(int p) { printf("eを計算します。E = (1+(1/k))^k\n"); printf("k=いくつまで計算しますか ?\n"); scanf("%d", &n); double E[n]; E[1] = 1; for (j = 1; j <= n; j++){ E[j] = E[j] + 1; } for (k = 1; k <= n; k++) { K = K + 1; A = 1 / K; // printf("A = %e, ",A); B = 1 + A; // printf("B = %e\n",B); for ( i = 1; i<=k; i++){ E[k] = E[k] * B; // printf("E[%3d]= %e\n",k,E[k]); } void main(void) { int n; int cnt; double answer; printf("計算する最大の項nを入力してください:"); scanf("%d",&n); for(cnt=1 ; cnt<=n ; cnt++){ answer=napier(cnt); printf("第%d項までの近似値:%f 真値:%f 差:%f\n",cnt,answer,exp(1),answer-exp(1)); } }

  • 漸化式の問題考え方はいいでしょうか

    a[1]=b[1]=1,a[n+1]=a[n]+2b[n]・・あ,b[n+1]=a[n]+3b[n]・・い (n=1,2,3......) のとき、 (1)lim[n->∞]b[n]=∞を示せ。 (2)a[n+1]*b[n]-a[n]*b[n+1]をa[n],b[n]であらわせ、またa[n-1],b[n-1]であらわせ。 (3)lim[n->∞]a[n]/b[n]を求めよ。 (1)実際にb[n]の一般項をもとめて、n->∞をして、∞を示す。 (2)項の番号を下げていく。(-1になることがわかる。) (3)(2)で求めた式の両辺をb[n]*b[n+1]でわり、n->∞をすると  (1)より、右辺は0に収束するから、lim[n->∞]a[n+1]/b[n+1]=lim[n->∞]a[n]/b[n]・・う  で収束する。また、(あ/い)よりa[n+1]/b[n+1]=(a[n]+2b[n])/(a[n]+3b[n]) 右辺の分母分子を  b[n]で割り、うの式からこの値をk(>0)とすると、k=(k+2)/(k+3) これをといて,-1+√3。 (3)はごまかしがあるようにおもいます。(1)は簡単にできるのではないかとおもいます。(2)はこれしかないとおもいます。 よろしくお願いします。

  • 複素積分

    複素関数f(z)を、   f(z)=(1-e^(2iz))/z^2 (zはC/{0}の元) とします。 (1)z=0におけるローラン展開 (2)R>0に対して、上半円弧CrをCr={z=Re^(iθ) : 0≦θ≦π}とし、   反時計回りに向きを入れるとき、    lim[R→∞] ∫[Cr] f(z)dz という上記の二問についてですが、 (1)について  e^zのテイラー展開にz=2izを代入し   f(z)=(1/z^2){1-(1+z+(z^2)/2!+…}   =-Σ[n=1→∞] (((2i)^n)z^(n-2))/n!  と強引に計算しましたが、これで大丈夫なのでしょうか? (2)について  z=Re^(iθ)を与式に直接代入して、    lim[R→∞] ∫[Cr] f(z)dz    =lim[R→∞] ∫[0,π] {1-e^(2iRe^(iθ))}/{Re^(iθ)} dθ  として、ここから積分評価をしていきたいのですが、どのようにして考えていけばよいのでしょうか?とりあえず、被積分関数の絶対値を考えてみたのですが、うまくいきません。どなたかアドバイスをいただけませんか? 以上の二問ですが、よろしくお願いします。

  • Σa_kとΣb_kを正項級数.lim(a_n/b_n)=0且つΣb_kが収束ならばΣa_kも収束

    [問]Σ[n=0..∞]a_kとΣ[n=0..∞]b_kを共に正項級数とする。 lim[n→∞](a_n/b_n)=0且つΣ[n=0..∞]b_kが収束ならばΣ[n=0..∞]a_kも収束。 を証明したいのですがどうすれば分かりません。 Σ[n=0..∞]a_kが正項級数とlim[n→∞]lim(a_n/b_n)=0より a_n≦0 これからどのようにすればいいのでしょうか?

  • 組み合せと場合の数について教えてください!

    1,1,2,2,3,3、・・・・・・・・n,nの2n個を、2個ずつのn組に分ける方法は何通りありますか。 例えば、n=3の時は、(1、1)(2、2)(3、3)、、、(1、1)(2、3)(2、3)、、、(1、2)(1、2)(3、3)、、、(1、3)(1、3)(2、2)、、(1、2)(1、3)(2、3) の5通りとなります。 自分は以下のように考えましたが、最後の漸化式が解けませんでした。 まず題意を満たす場合の数をa(n)とし、また1,1,2,2・・・・・n,n,r,sの2(n+1)個を、2個ずつのn+1組に分ける場合の数をb(n)とします。 a(n+3)について考えると(n≧1)、 (i)(n+3,n+3)と組みにしたとき、残りの分け方はa(n+2)通り。 (ii)(n+3,k)(n+3,k)と組みにしたとき(1≦k≦n+2),残りの分け方はa(n+1)通り。 (iii)(n+3,j)(n+3,k)と組みにしたとき(1≦j<k≦n+2)、jとkの選び方はn+2C2通りで、残りの分け方はb(n)通り。 (i)(ii)(iii)より、a(n+3)=a(n+2)+(n+2)×a(n+1)+n+2C2×b(n),(n≧1)・・・・・・・(1) b(n+1)について考えると(n≧1)、 (i)(r,s)と組みにしたとき、残りの分け方はa(n+1)通り。 (ii)(r,k)と組にしたとき(1≦k≦n+1)、残りの分け方はb(n)通り。 (i)(ii)より、b(n+1)=a(n+1)+(n+1)×b(n),(n≧1)………(2) (1)(2)からa(n)を消去すると 2×b(n+3)-2×(n+4)×b(n+2)+(n+2)(n+1)b(n)=0,(n≧1)・・・・・・・(3) (1)(2)からb(n)を消去すると 2×a(n+3)-2×(n+3)×a(n+2)+(n+2)(n+1)a(n)=0,(n≧1)・・・・・・・(4) 上の問題はあるテキストの問題から考えました。そのテキストでは同じ数字を区別してやっていたのでわりとやりやすかったのですが、区別しないとどうなるだろうと考えたのが上の問題です。数学が得意な方よろしくお願いします。