• 締切済み

これが位相的性質であるかの判定法はある?

A⊂C^nはLebesgue可測⇔{(Re(z),Im(z));z∈A}はLebesgue可測 の証明に就いてです。 2つの位相空間(X,T)と(Y,S)とが同相関係(位相同形関係)にある時, Xでの位相的性質はYでも保存されるのですよね。 C^n と (R^n)^2 とが位相同型なのでLebesgue可測性が位相的性質であれば上記の命題は証明されたことになりますが Lebesgue可測性って位相的性質と言ってもいいのでしょうか? そもそも"位相的性質"とは何なのでしょうか?

みんなの回答

回答No.1

>そもそも"位相的性質"とは何なのでしょうか? 同相な位相空間に常に共有される性質を位相的性質というらしいですね。 >Lebesgue可測性って位相的性質と言ってもいいのでしょうか? 少なくともBorel集合かどうかという所までは、位相的性質でしょう。 なぜなら、 1:位相空間AのBorel集合族とは、Aの開集合(閉集合)をすべてふくむ最小の完全加法族であること 2:同相写像によって、集合の和と交わり、両方について、そのまま持っていける (同相写像fによる和集合の像はそれぞれの集合の像の和であり、交わりについても同様) からです。 しかし、Lebesgue可測となると、完備性の性質がはいりますから、測度の大きさの概念が入ってきますね。測度に関して0のBorel集合の部分集合であるとか、その補集合であるかの性質がはいってきます。だから、Lebesgue可測性は完全には位相的性質とは言えません。 もっともC^n での測度を、対応する(R^n)^2での測度から定義すれば、完備性も保たれることにはなりますが、、、。

Dominika
質問者

補足

>>そもそも"位相的性質"とは何なのでしょうか? > 同相な位相空間に常に共有される性質を > 位相的性質というらしいですね。 位相的性質の一覧が紹介してあるサイトとかないのでしょうか? とりあえず, 位相的な性質: Borel集合性(X⊃AがBorel集合⇔f(A)がBorel集合), G_δ性(X⊃AがG_δ集合⇔f(A)がG_δ集合), compact性,開被覆(X⊃Aがcompact⇔f(A)がcompact), Hausdorff性(X⊃AがHausdorff空間⇔f(A)がHaursdorff空間), 開核性(X⊃Aが開核⇔f(A)が開核) (但し,fは(X,T)→(Y,S)の同相写像) などが挙げられるのですね(以外と少ないのですね)。 他にも何かありますでしょうか?

関連するQ&A

  • 位相数学の証明問題です。

    位相数学の証明問題です。 以下の証明を,どなたか分かる方,お願いします。 R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ。 ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう。

  • 位相空間の同相について

    位相空間(X,Ox)と(Y,Oy)で、全単射f:X→Yに対して、fおよび逆写像f^(-1)がともに連続であるときfを位相写像といい、f:X→Yなる位相写像が存在するとき、(X,Ox)と(Y,Oy)は同相(同位相)であるというのでした。 位相空間(X,Ox)に対し、直積空間X×Xに適当な位相O’を入れたとき、 (X×X , O')と元の位相空間(X,Ox)は同相ではないと思うのですが、証明はどのようにしたらいいでしょうか。 位相写像が存在しない、ということを言えばいいと思いますが、存在しない、ということをどのように示したらいいのかがわかりません。 よろしくお願いします。

  • 同型の質問です

    ある命題の証明の途中で同型を示そうと思ったのですが,いまいちわからなかったので,ご助言いただければ幸いです・ 命題: R-加群の完全列{0}→X→Y→Z→{0](φ:X→Y,ψ:Y→Z)について、次の性質は同値: (1)R-準同型ρ:Y→Xで,ρφ=1xとなるものが存在する; (2)R-準同型μ:Z→Yで,ψμ=1zとなるものが存在する. (1x,1zはそれぞれX,Zの恒等写像) このとき,次の直和分解を得る: Y=φ(X)○+Ker(ρ) = Ker(ψ)○+μ(Z) ~=X○+Z (○+は直和, ~=は同型を表しています.) 前半の同値性は証明できたので,認めることにします. 後半の証明において,テキストでは, Y = φ(X) ○+Ker(ρ) ・・・✽ となり,φは単射,ψは全射であるから, φ(X) ~= X , ・・・(1) Ker(ρ) ~= Y/φ(X)~=Z ・・・(2) を得る. となっていました.(✽までの過程は自力でできたので割愛させていただきます.) (1)に関しては準同型定理から示せましたが, (2)がいまいちわかりませんでした. よろしければご助言お願い致します

  • 位相数学の証明問題について質問です。

    位相数学の証明問題について質問です。 以下のXとYが同相でないことを証明したいのですが,なかなかうまくいきません。 X = { ( x , y ) ∈ R^2 | x^2 + y^2 < 1} Y = { ( x , y ) ∈ R^2 | x^2 + y^2 < 1 , y ≧ 0} どなたか位相数学に詳しい方ご教授お願いします。 なるべく細かくお教えいただけると幸いです。 よろしくお願いします。

  • 位相数学の証明問題です.

    以下の証明を,どなたか分かる方,お願いします. (1)R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ. (2)R^2とR^2 - { (0,0) }(原点を除いた平面)は同相(※)でないことを示せ. ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう.

  • 大学の位相数学の問題についてです。

    大学の位相数学の問題についてです。 どなたか下記問題を解いて下さる方お願い致します。解答希望です 以下のXとYが同相でないことを証明せよ X = { ( x , y ) ∈ R^2 | x^2 + y^2 < 1} Y = { ( x , y ) ∈ R^2 | x^2 + y^2 < 1 , y ≧ 0} どなたかよろしくお願いします。

  • 位相幾何学に関連した証明問題です。

    X,Yを2つの位相空間とする。 写像f:X→Yが全単射で、連続であるとき、fが同相写像となるためには、fが開写像(または閉写像)となることが必要十分である。 これを示せ。 詳しい証明お願いします。

  • 位相数学の問題です

    問1。 x∈R^2,r>0に対しR^2の部分集合Ur(x),Ir(x)を Ur(x)={y∈R^2:d2(x,y)<r} Ir(x)={y∈R^2:d∞(x,y)<r} とする。 ここでd2はEuclid距離,d∞はノルムⅠⅠ・ⅠⅠ∞により定義される距離(のn=2の場合)とする。 このときy∈Ir(x)に対しUp(y)⊂Ir(x)となるp>0を具体的に求めろ。 問2 (X,D)を位相空間。△:X→X×X、△(x)=(x,x)を対角線写像とする。このとき、△は位相空間Xから積空間X×Xへの連続写像であることを示せ。 問3 X、Yを位相空間とする。写像f:X→Yに対し、F:X→X×Y、F(x)=(x,f(x))とする。fが連続ならばFはXからの直積空間X×Yへの連続であることを示せ。 問4 X×Yを位相空間(X,Dx)と(Y,Dy)の直積空間とする。Xの任意の点xに対してX×Yの部分空間{x}×Y(={(x,y)∈X×Y:y∈Y})はYと同相であることを示せ。 問5 (X,Dx)、(Y,Dy)を位相空間、(Z,Dz) (Z=X×Y)を直積位相空間、px:Z→X、py:Z→Yを射影とする。次の主張が正しければ証明し、誤りであれば反例をあげろ。 (i)射影pxは開写像である (ii)射影pxは閉写像である

  • 大学数学の位相幾何について

    大学数学の位相幾何について Z^3の部分群Z、Bを     Z={(a,b,c)|a+b+c=0} B={(2n,2n,-4n)|n∈Z}    とおくとき、アーベル群Z/Bはどのような群と同型か求めよ。 どなたか教えていただけませんか?

  • Q1、基本行列の性質、行列式の性質を用い lPijl の値を求めよ。(

    Q1、基本行列の性質、行列式の性質を用い lPijl の値を求めよ。(証明) Q2,基本行列の定義、基本行列を行列の左側からかけたときの性質を用いてPij(c)の逆行列を求めよ。(証明) Q3,写像f:X→Y,g:Y→Zがともに1対1対応のとき、合成写像g・f:X→Zも1対1対応になることを示せ。 Z=(g・f)(x)=g(f(x)) 一問でもいいので、わかる方いらっしゃったら、お願いします。