TTLインバータ等価回路のトランジスタの動きについての疑問

このQ&Aのポイント
  • TTLインバータ回路の等価回路の動作についての疑問点をまとめました。
  • SW1がLowの場合、TR1がON状態になり、電流はR1を通って流れます。
  • SW1がHighの場合、TR1はOFF状態になりますが、TR2のベースへ電流が流れる理由がわかりません。ケース1とケース2のどちらが正しいのか疑問です。
回答を見る
  • ベストアンサー

TTLインバータ等価回路のトランジスタの動きについ

TTLインバータ回路の等価回路の動作について考えていたのですが、どうしてもわからない部分があるため、どなたかお解かりになる方教えていただけないでしょうか。 わからないのは入力直後の2つのトランジスタの動きです。回路はこの部分を抜粋して見ていますが、回路図のSW1をLowとしたとき 1、VccからR1の抵抗を通ってTR1のベースからエミッタに向けて電流が流れてTR1がONの状態になる 2、TR1がONすることにより、TR1のエミッタとコレクタは導通状態となるが、電流源となる電源が無いため電流は流れない。 3、よって、スイッチに流れていく電流は、R1を通過した電流のみと考えてよい で、SW1をHighにしたときですが、 4、TR1のエミッタの電位がコレクタとほぼ同電位となるためTR1のベースに電流は流れず、TR1はONしない までは、わかるのですが ここで、TR2のベースへ電流が流れる理由がわかりません。 ケース1 SW1がHighになったことで、TR2のベースに向かって電流が流れるとすると、TR1のエミッタからコレクタを通って流れるのか? はたまた、 ケース2 VccからR1を通ってTR1のベースからコレクタへ流れるのか? と躓いています。 Tinaという回路シミュレータでこの回路の動きを見たのですが、どうもケース1のような動きをしていますが、この結果が正しいのか、正しければどうしてそうなるのか(エミッタからコレクタの逆方向へ電流が流れる)? お解かりになる方が見えましたら、教えてください。よろしくお願いいたします。 ちなみに、シミュレーションの結果では、SW1がHighの時に   VccからR1を通じて225.38μAがTR1のベースに向かって流れている。      TR1のコレクタからTR2のベースに向かって1.35mAの電流が流れている。      SW1からTR1のコレクタに向かって1.13mAの電流が流れている。 結果になっています。

質問者が選んだベストアンサー

  • ベストアンサー
  • mink6137
  • ベストアンサー率23% (595/2498)
回答No.3

>ここで、TR2のベースへ電流が流れる理由がわかりません。 >ケース1 >SW1がHighになったことで、TR2のベースに向かって電流が流れるとすると、 >TR1のエミッタからコレクタを通って流れるのか? 逆NPN(エミッタ→コレクタ、コレクタ→エミッタとして)動作の電流が流れます。 >はたまた、 >ケース2 >VccからR1を通ってTR1のベースからコレクタへ流れるのか? >と躓いています。 コレクタをエミッタとして使うモードなので、ベース電流も流れます。 >Tinaという回路シミュレータでこの回路の動きを見たのですが、どうもケース1のような動きをしていますが、こ>の結果が正しいのか、正しければどうしてそうなるのか(エミッタからコレクタの逆方向へ電流が流れる)? >お解かりになる方が見えましたら、教えてください。よろしくお願いいたします。 ケース1とケース2の電流の和がTR2のベース電流になるのが正しいです。 >ちなみに、シミュレーションの結果では、SW1がHighの時に >  VccからR1を通じて225.38μAがTR1のベースに向かって流れている。 このベース電流は逆NPNのエミッタを通ってTR2のベースに流れます。 >  TR1のコレクタからTR2のベースに向かって1.35mAの電流が流れている。 >  SW1からTR1のコレクタに向かって1.13mAの電流が流れている。 この場合、Ic+Ib=Ieなので、1.13mA+0.225mA=1.355mA となり、逆NPN時の電流増幅率βI≒5.0程度にTR1のモデルパラメータが設定されているようですね。

March-hill
質問者

お礼

mink6137 さま 回答の詳しい解説ありがとうございました。 ほかの方の回答であった逆接続の際の資料の確認とあわせて再度シミュレーションしてみました。 SW1がHighのときは、TR1のベース電位がコレクタ電位よりも0.6Vほど高くなっており逆接続の動作条件を満たしていることが確認できました。 回路の動きとしては、 SW1がHighになると 4、TR1のエミッタの電位がコレクタとほぼ同電位となるためTR1のベースに電流は流れず、TR1はONしない 5、TR1のベースの電位はほぼ5Vとなり、TR1のコレクタ側より電位が高くなる 6、TR1のコレクタ-ベース間の電位が逆接続の条件を満たしたため、TR1のエミッタからコレクタの逆方向へ電流が流れ出す 7、TR1のコレクタから流れてきた電流とTR1のベースを通じてコレクタへ流れた電流がTR2のベース端子に流れ込み、TR2がON状態となる という動きになりました。 あと、シミュレーションしてわかったのですが、この回路ではA点の電位は常時TR1のベース電位よりも低い状態のようです。 Lowのとき、TR1のコレクタはほぼ0VでTR1のベース電位のほうが0.6Vほど高くなっています。 Highのときは (1)SW1がLowからHighへと切り替わる、 (2)TR1のエミッタとベースが同電位となりこの方向へ電流は流れない (3)TR2のベース電位が0Vと低いことからTR1のベースからTR1のコレクタへ電流が流れ出す (4)これに伴い、TR1のエミッタからコレクタに向けて電流が流れ出す (5)(2)と(3)の電流がTR2のベースへ流れることでTR2をONさせる (6)TR2のベース電位は、R2とR4に流れる電流とTR2のVBE=0.7Vを加算した電位となる (7)R1にはごくわずかな電流しか流れず電圧降下も小さいことからTR1のベース電位は高いままの状態 (8)TR2はON状態を維持する。 となるため、TR1のコレクタ(TR2のベース)の電位は、常にTR1のベース電位よりも低くなっているようです。 モデルパラメータは、特に気にしていませんでしたが、確認したら5倍に設定してありました。 細かい点までご指摘いただき、理解することができました。 このたびは、回答ありがとうございました。

その他の回答 (2)

  • tadys
  • ベストアンサー率40% (856/2135)
回答No.2

>ケース2 VccからR1を通ってTR1のベースからコレクタへ流れるのか? ケース2が正しいです。 トランジスタのコレクタとエミッタを逆にしてもトランジスタとして動作します。 ただし、下記URLにある様に性能は低下します。 http://www.rohm.co.jp/web/japan/tr_what3-j

March-hill
質問者

お礼

tadys さま 回答ありがとうございました。 資料のURLも助かりました。 偶然にも昨日、その資料のページで抵抗つきトランジスタのページを見ていましたが、同じところに答えがあるとは思いませんでした。 資料の内容といただいた回答とあわせて再度シミュレーションをしてみたいと思います。 このたびは、回答ありがとうございました。

  • shintaro-2
  • ベストアンサー率36% (2266/6244)
回答No.1

>Tinaという回路シミュレータでこの回路の動きを見たのですが、どうもケース1のような動きをしていますが、この結果が正しいのか、正しければどうしてそうなるのか(エミッタからコレクタの逆方向へ電流が流れる)? 正しいです バイポーラTrは、 PNPとかNPNというサンドイッチ構造なので、原理的にエミッタとコレクタとを逆に接続しても動作します。 ただし、その場合はhFEがもとの10%程度まで低下するようです。

March-hill
質問者

お礼

shintaro-2 さま 回答ありがとうございました。 逆接続に関しては、動作しないものと考えていましたがそうではないようですね。 そいうえば、トランジスタの勉強をしたときに、同じ素子ではさんでいるのになんで逆に動かないんだと疑問に思ったことを思い出しました。 そのときは、動きを覚えることに集中して無視していましたが、まさかこんなところでその疑問が解決するとは思いませんでした。 やっぱり、疑問はちゃんと解決するのが一番と思い知りました。 このたびは、ご回答いただきありがとうございました。

関連するQ&A

  • トランジスタの動きについて

    過電流や突入電流防止のため、電源ラインに二つのトランジスタを構成している回路を見ます。 例えば添付の回路になりますが、TR1のベースがONになり、TR2もONになってVoutすると思うのですが、何故TR1のベースがONになるのか理解出来ていません。 R1とR2で分圧していることが考えらるのでしょうか。 しかし、R2がない場合の回路もあります。(R1のみで構成した回路) その場合の電気の流れ方を知りたいです。 無知ですみませんがよろしくお願いします。

  • トランジスタのスイッチング作用(その2)

    トランジスタのスイッチング作用について質問があります。 前回と似た質問で恐縮です。 *------------Vcc(12V) | RL | *------------Vout |   C (0~5V)Vin-----R------B NPNトランジスタ E | | o-------------*------------o 上図の回路で正の入力電圧を印加し、NPNトランジスタを飽和させてスイッチングさせます。正の入力電圧を印加しているときは、トランジスタがONし、コレクタからエミッタへ電流が流れます。また、ONしているので、入力の位相が反転して出力に現れます。 ON時のコレクタ・エミッタ間電圧VCE(sat)が0.4Vとすると、コレクタの電位は0.4Vになります。 ここで質問です。 トランジスタがスイッチONの時、VBEは0.7V(動作時のVBEはおおよそこの電圧で考えるようですね。)、VCEは0.4Vとなると、コレクタ(電圧低い)、ベース(電圧高い)という関係になります。電流は電圧が低いところから高いところへは流れません。ということはコレクタからベースには電流は流れないことになります。ベースに電流が流れなければエミッタへも流れません。しかし、現実にはコレクタ→エミッタで流れます。これはどう考えたらよいのでしょうか。理由がわかりません。 入門書ではエミッタからベースに自由電子が流れて、大半がベースを突き抜けてコレクタへ移動するためコレクタからエミッタに電流が流れるとあります。これは理解できます。ただし質問の場合は、コレクタ(電圧低い)、ベース(電圧高い)という関係は無視されて、電圧が低いところから高いところへ流れるという現象になるのでしょうか。 「同じような質問して!」と思われるかもしれません。恥ずかしい限りですがホームページでも書籍でもズバリの理由が探し出せません。よろしくお願いします。

  • トランジスタを使ったスイッチイング回路について

    トランジスタのスイッチング回路を用いて、圧電素子によってプレイステーションのコントローラのON、OFFする回路を作っています。 http://www.nahitech.com/nahitafu/mame/mame2/s01.html にある回路図を元にしていて、 ベースに圧電素子、コレクタにコントローラの+側、エミッタにGND側と圧電素子のもう片方を接続して、圧電素子に振動を与えるとスイッチが動作しましたが、感度が若干鈍いので、試しにコレクタとベース間に抵抗をはさんでみたところ感度がだいぶ良くなりました。 しかし、このようなスイッチング回路はインターネットや書籍などでも見かけなかったので、使っても大丈夫なのか気になっています。 この回路図でコレクタ-ベース間に抵抗を入れて動作させた時の、問題点等を教えてください。 トランジスタはNPN型(2sc1815)で、コントローラの+、GNDの電圧、電流も約4V、0.2mV程度です。 また、各抵抗値の計算としてコレクタ-ベース間は R1=Vcc(電源)-Vbe(約0.6V)/I(電流) ベース-エミッタ間は R2=Vbe/I と考えたのですがこれでいいのでしょうか? 電気・電子回路は初心者であまり詳しいことはわかりませんが、よろしくお願いします。

  • バイポーラトランジスタの小信号等価回路

    アナログ電子回路を独学で学んでいる者です。 最初に写真(ii)のバイポーラトランジスタのエミッタ接地回路についてです。ベースーエミッタ間電圧Vbeを大きく変化させていくと、ある点で"コレクタ電流Icが流れすぎて、出力電圧Voが"接地電位でクランプ(固定)される"とあり、確かにグラフからそのように見てとれます。これは一体何が起こったのでしょうか?VoはVo=Vcc-Ic*RLで表され、トランジスタのコレクターエミッタ間電圧に等しいと考えています。これがゼロになるという事は、トランジスタ内での電圧降下がゼロになるという事でしょうか? 次に写真(i)の同じくエミッタ接地回路についてです。 この回路の各部分にあるコンデンサはどういった役割があるのでしょうか。教科書には"直流バイアス点に信号を入出力するため"とありますが、仮にコンデンサがない場合、信号を入出力できないのでしょうか?特に出力端子側についているC2のコンデンサが気になります。 次に小信号等価回路についてです。 なぜこのような回路に変換できるのか、一通り教科書を読みましたが、分からない点が多々あります。 写真(iii)の回路は(i)の等価回路で、(iv)の等価回路は、ごく一般的なエミッタ接地回路の等価回路になります。 まず(iii),(iv)どちらの等価回路にも電流源gmVbe'がありますが、これは入力電圧v1によって、Vbeが変化し、このVbeから、ベースが広がり減少した電圧分を差し引いた電圧Vbe'によって生じるコレクタ電流Icの変化分ΔIc'だと考えています。 次に(iv)のroについて、 1/ro=go=∂Ic/∂Vceより、goVceは、コレクターエミッタ間電圧Vceの変化によって生じるコレクタ電流Icの変化分ΔIc''になると考えています。 そして全コレクタ電流の変化分ΔIcは、i2の向きも踏まえて、ΔIc=ΔIc'+ΔIc''=-i2になるのだろうと考えています。 ここで質問ですが、なぜΔIc'分のgm*Vbe'の方は電流源として表され、ΔIc''分のgo*Vceは抵抗roとして表されているのでしょうか?2つとも電流源gmVbe, goVceで表すのは正しくないのでしょうか? もう1つ質問ですが(iii)の回路では、なぜかroが見当たりません。 (iii)も(iv)も同じ小信号等価回路であるはずなのに、なぜでしょうか?

  • 高周波等価回路

    写真上の回路の等価変換した回路が写真下の回路になりますが、この変換において分からない点があります。 まず、変換後の回路で1段目の増幅器と2段目の増幅器を比べた時に、2段目の方は電流源gmVbe2が下向きに、抵抗RL2と並列に組みこまれているのに対し、1段目の方は電流源gmVbe1が上向きに、抵抗RL1と直列に入っています。 なぜ2つの電流源がこの様に異なる向きに入っているのか、またなぜ抵抗RL1の方は直列に、一方の抵抗RL2の方は並列に入っているのか教えてください。RL2は、2段目のトランジスタのコレクタ~エミッタ間抵抗で、電流源VBE2の内部抵抗として並列に入っているのではないかと考えています。 次に、変換前の回路のRE1が変換後の回路で並列に繋がれているのに対して、RE2の方は変換後の回路には見当たりません。この様に違いが見られるのはなぜでしょうか。 最後に、変換後の回路の赤で◯を付けた部分についてですが、なぜこの部分は繋がっているのでしょうか。この部分は、1段目のトランジスタのベース~コレクタ間にあたると思うのですが、ここにも直流電流が流れているのでしょうか。 *写真が見にくくてすみません。 まず写真上の回路についてです。 左上の電源はVccで、左下から交流電源V1ーRs1ーC1ー(R11//R21)ー(1段目のトランジスタのベース)と繋がっています。 そしてこのトランジスタのコレクタ側にRL1, エミッタと接地点の間にRE1が繋がっています。 このエミッタ側の分岐点から、右方向にC3ー(R12//R22)ー(2段目のトランジスタのベース)と繋がっています。 そしてこの2段目のトランジスタのコレクタ側にRL2とC4が、エミッタ側にRE2とCE2が繋がっています。 写真下の回路についてです。 左から入力電圧v1ーRs1ー(R11//R21)ー(rπ1とこの部分の電圧降下VB1)ーRE1ー(電流源gm*VBE1とその下にRL1)ー(R12//R22)ー(rπ2とこの部分の電圧降下V2=VBE2)ー(電流源gm*VBE2)ーRL2ー出力電圧v2 となっています。

  • トランジスタの見分け方 電子回路

    電子回路におけるトランジスタの見分け方について教えてください。 エミッタ接地とは、入力がベース、出力はコレクタから取り出すタイプ コレクタ接地とは、入力がベース、出力はエミッタから取り出すタイプ ベース接地とは、入力がエミッタ、出力はコレクタから取り出すタイプ という風に理解するとよいと教えられたのですが、いまいち意味が分かりません。 添付画像の回路においてはそれぞれどのようにして、エミッタ接地、コレクタ接地、ベース接地というのを見分ければよいのでしょうか? 画像が見にくくて申し訳ないです。 例えばcの回路はベース回路ですが、交流電源の電圧によって流れる電流はベースにもエミッタにも流れるのではないのでしょうか? なのに、なぜ入力はエミッタと決定できるのですが? このように頭の中で混乱して、分からくなってしまいました。 ご指南お願い致します。

  • 高周波等価回路

    最初に写真のバイポーラトランジスタの高周波等価回路の容量についてです。 Cπは、Cπ=Cd (ベースーエミッタ間接合容量) + Cje (拡散容量)、Cμはベースーコレクタ間接合容量、Ccsはコレクター半導体間容量となっています。 rπは、rπ=ΔVbe/ΔIb, rbはベースの広がり抵抗、roは、ro=ΔVce/ΔIcと前回質問した小信号等価回路でも同様に表されていたものです。 質問ですがなぜ各容量Cπ、Cμ、Ccsは、それぞれ写真のように繋がれているのでしょうか。 例えばCπは、ベースーエミッタ間抵抗rπと並列に繋がっていますが、Cμはベース~コレクタ間に繋がっていて、ベース~コレクタ間抵抗に相当するものは見当たらない様です。 小信号等価回路でも同様にベース~コレクタ間抵抗はありませんでしたが、これはなぜでしょうか。 また小信号等価回路ではベース~コレクタ間に電流が流れていなかった様ですが、一方の高周波等価回路ではベース~コレクタ間がCμで繋がれているので、この区間も電流が行き来しているのでしょうか。 そしてCcsについて、これはコレクタ~半導体基板間抵抗とありますが、具体的にn型半導体コレクタとどこの間の容量を指すのでしょうか。 最後に、"等価回路より、rbが高く、ベース~エミッタ間容量Cπが大きいと、信号周波数が高くなる程、ベース~エミッタ間に電流が流れやすくなり、rbによる電圧降下が大きくなる。すると、rπにかかる電圧Vbe'が低下し、gmVbe'で表されるコレクタ電流の変化が小さくなる。"と教科書に書かれています。 これはどういう事でしょうか。 何か分かりやすい具体例があれば教えて下さい。

  • エミッタ接地増幅回路について

    ベース電位が増加した時に、ベース電流が増加し、コレクタ電流が増加するので、コレクタ抵抗にかかる電圧が大きくなり、コレクタ・エミッタ間電圧は、小さくならなければならないのに、なんで、交流等価回路で考えると、コレクタ電流が増加することによってコレクタ・エミッタ間電圧が増加するんでしょうか?

  • トランジスタのスイッチング作用

    最近トランジスタの勉強をしていますが、トランジスタのスイッチング作用について質問があります。 *------------Vcc(12V) | RL | *------------Vout |   C (0~5V)Vin-----R-------B NPNトランジスタ E | | o-------------*------------o 上図の回路で正の入力電圧を印加し、NPNトランジスタを飽和させてスイッチングさせます。正の入力電圧を印加しているときは、トランジスタがONし、コレクタからエミッタへ電流が流れます。また、ONしているので、入力の位相が反転して出力に現れます。ON時のコレクタ・エミッタ間電圧VCE(sat)が0.4Vとすると、コレクタの電位は0.4Vになります。 ここで質問です。 トランジスタがスイッチONの時、VBEは0.7V(動作時のVBEはおおよそこの電圧で考えるようですね。)、VCEは0.4Vとなると、コレクタよりもベース側が電位が高いことになります。コレクタから見てコレクタ→ベースはダイオードに順方向電圧がかかった状態と考えられます。 となると、ベースからコレクタに電流が流れそうですが、実際は逆にコレクタからベースを通してエミッタに流れます。ベースからコレクタに電流が流れないのはコレクタ・ベース間に0.7V程度以上の順方向電圧がかからないためなのでしょうか(コレクタ・ベース間はダイオードのようになるので)。 もしそうであるとすると、コレクタ・ベース間に0.7V程度以上の順方向電圧がかかった場合はベースからコレクタに電流が流れてしまうのでしょうか。 NPNトランジスタの2SC1815のデータシートではコレクタ・エミッタ間飽和電圧 VCE (sat) はtyp=0.1V MAX=0.25Vです。また、ベース・エミッタ間飽和電圧 VBE (sat) はMAX=1.0 Vです。VCE (sat)が0.1VでVBE (sat)が1.0V(MAX)だと0.9Vの差となるので、コレクタ・ベース間に0.7V程度以上の順方向電圧がかかることになり、ベースからコレクタに電流が流れそうです。 実際はこのような状況にならないのでしょうか。 素朴な疑問ですがトランジスタのスイッチング動作時にベースからコレクタに電流が流れない理由がわかりません。 ご教授よろしくお願いいたします。

  • トランジスタ増幅回路

    トランジスタ増幅回路 図の回路で入力信号viが有った時、 ベース交流電流ibが流れるのは解るのですが、 コレクタ交流電流icが流れるのが理解出来ません(´・ω・`) 出力側にはコレクタ直流電源Vccしか無いのに コレクタ交流電流icはどこから流れてきたのでしょうか?