• 締切済み

二階同次微分方程式が存在しないことの証明

二階同次微分方程式 y''+p(x)y'+q(x)y=0 に関して次の設問に答えなさい。 (1)y=y1、y=y2を解としてもつとき、ロンスキアンの定義を示しなさい。 (2)x^3と|x^3|を共に解としてもつ二階同次微分方程式は存在しないことを証明しなさい。 とある教科書の例題です。 (1)の方はロンスキアンの定義の説明だから対処できますが、 (2)の方は、絶対値が絡んでいることもあり、 私の現在の理解では、十分な証明をすることができません。 よろしければ、お答えいただきたいと存じます。

みんなの回答

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.1

>二階同次微分方程式 y''+p(x)y'+q(x)y=0 に関して次の設問に答えなさい。 >(1)y=y1、y=y2を解としてもつとき、ロンスキアンの定義を示しなさい。 >(2)x^3と|x^3|を共に解としてもつ二階同次微分方程式は存在しないことを証明しなさい。 >(1)の方はロンスキアンの定義の説明だから対処できますが、 >(2)の方は、絶対値が絡んでいることもあり、私の現在の理解では、十分な証明をすることができません。 ならば (2) だけ…。 その同次方程式の一解が y1 = x^3 だとして、y2 = |x^3| を想定。 x≧0 と x<0 の二域を想定すれば、  x≧0 にて y1=y2  x < 0 にて y1=-y2 なので、y2 も同次方程式を満たす。 (つまり、解にはなっている) けど「ロンスキ」テストをかけると、x の全域にて零値。 つまり y1, y2 は互いに独立じゃない。 …のでチャンと「本ボシの独立解をさがせ」という意味なのでしょうネ。   

関連するQ&A

  • 2階非同次線形方程式

    次の2階線形の微分方程式の特殊解が答えと一致しないので分かる方、教えて下さい。 y''-2y'+y=(e^x)/(√(1-x^2)) 同次方程式として y''-2y'+y=0を解き、λ^2-2λ+1=0からλ=1の重根を出し、ロンスキアンを使う。そして定数変化法により、特殊解を求めたいと思っていますが、ならないのでお願いします。 答えは y=(c1+c2x+√(1-x^2)+xarcsinx)e^x になっている。

  • 同次形の微分方程式

    教科書の同次形の微分方程式の例題の一つです。 (x+2y)dx+ydy=0を解け という問題で y=vxとおくとなぜdy=vdx+xdvといえるのでしょうか? 教えてください。

  • 1階非同次微分方程式の一般解について

    1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。

  • 2階非同次微分方程式の問題

    2階線形非同次微分方程式 y"-9y=3x^(3) 基本解y1=e^(3x),y2=e^(-3x) 基本解の定数係数の線形結合を u1(x)=a11*y1(x)+a12*y2(x) u2(x)=a21*y1(x)+a22*y2(x) とするとき、u1(x),u2(x)が2階定数係数同次微分方程式y"-9y=0の基本解となる条件を述べ、理由を説明せよ。 という問題があり、どこから手をつけたら良いかわからない状況です。どなたか教えて頂けたらと思い、質問しました。宜しくお願いします。

  • 1階非同次線形微分方程式の解法について

    難しすぎてよくわからないので質問します。 いろんなサイトを見てもよくわからなかったので分かりやすい回答おねがいします。 みなさんから見れば、なぜこんなことも分からないの、なにを言っているの?と思うのかもしれませんが、丁寧に解説してくれるとありがたいです。 非同次方程式の一般解=同次方程式の一般解+非同次方程式の特殊解となるようですが、 なぜこれが成り立つのかわかりません。 いろんなサイトみたのですが、数式がいっぱい書いてあってなにがなんだかわからない状態です。 まだ、変数分離の解法しかやっていないので、難しいことを言われても分からなくなってしまいます。 まず、1階線形微分方程式は、dy/dx+f(x)y=g(x)などのように表されるということは分かりました。 そしてこのg(x)を0としたものが非同次となるわけですよね。 つまり、dy/dx+f(x)=0です。 そしてこの解法として、まずy=u(x)が同次方程式の一般解としようと書いてあります。 ですが、もうこの時点でよくわからないです。 なぜ一般解としようと考えたのかってとこに疑問があります。 特殊解でもなく、なぜ一般解なのかということです。 そして、これを代入すると、du(x)/dx+f(x)u(x)=0となるのはわかります。 ただ代入するだけなので。 次に、y=v(x)を非同次方程式の特殊解としようと書いてあります。 でもなぜ非同次方程式の特殊解にするのかわかりません。 同次方程式の特殊解と考えてはだめなのかと思ってしまします。 まさか適当においたとも思えませんし。 なにかの考えがあってのことだと思いますし。 ようするに、なぜこのようにおいたのか、道筋というか目的ってのがよく見えないのです。 いったいなにをやっているのか。 たぶん一般解と特殊解の関係?みたいなのがわかっていないので、悩んでいるような気がします。 つまり、 非同次方程式の一般解=同次方程式の一般解+同次方程式の特殊解とおくことはできないのかと。 質問の意味あまりわからないかもしれませんが、すいません。 わからなすぎて、なにが分からないのかもわからない状態で。 丁寧に解説してくれるとありがたいです。

  • 同次形の微分方程式

    おそらく同次形の一階の微分方程式の問題で xy' = y + √(x^2-y^2) というもんだいをといてみました(勝手に同次形で・・・w) 最終的に arcsin(y/x) = log|x| + C (C;a.c) とまでいったので±e^(-C)=αとして x = α exp(arcsin(y/x)) にしたんですけども解答では y + √(y^2 + x^2) = βx^2 という形になっているのですが、どうしたらこんな形の一般解を 導くことができるのでしょうか。 アドバイスお願いします!

  • 同次形高階微分方程式について

    同次形高階微分方程式について 同次形高階微分方程式の単元を読んでいますと、「y,dy,d2y について同次の場合」とか「x,dx について同次の場合」とあるのですが、式を見てy,dy,d2y について同次なのか、x,dx について同次なのか判断できません。具体的には、 xy(d2y/dx2)-x(dy/dx)^2+y(dy/dx)=0 はy,dy,d2y について2次の同次形で、x^2(d2y/dx2)+x(dy/dx)+y=0 はx,dx について0次の同次形 であるとありますが、どのように判断すればよろしいのでしょうか?

  • 2階線形同次微分方程式について。

    2階線形同次微分方程式について。 解が複素解の場合の質問です。 複素解λ1,2をもつ時、一般解は、Z(X)=C10e^λ1x+C20e^λ2x となり、これを整理すると、 y(X)=e^(-ax/2)[C1cos(√(―a^2+4b)x/2)+C2sin(√(―a^2+4b)x/2)] となるとのことです。そこで、教科書にC1=C10+C20の実数部分  C2=iC10-iC20の実数部分 と書いてあります。 この実数部分とはどういうことなのですか? なぜ実数部分なのですか? よくわかりません。 どうぞよろしくお願いいたします。 どうぞよろしくお願いいたします。

  • 2階線形同次微分方程​式

    以下の問題の解き方が理解できません。 途中の計算なども詳しく教えて頂けると幸いです。 (1) 2階線形同次微分方程式の関数と,二つの関数y1とy2および初期条件の対が与えられている.最初に二つの関数y1とy2が微分方程式の解であることを確認せよ.次に,初期条件を満たす特殊解を求めよ. (1) y''-y=0; y1=e^x, y2=e^-x; y(0)=0, y'(0)=5 (2) y''+4y=0; y1=cos2x, y=sin2x; y(0) = 3, y'(0)=8 (3) y''-3y'+2y=0; y1=e^x, y2=e^2x; y(0)=1, y'(0)=0

  • 非同次2階線形微分方程式についてです

    非同次2階線形微分方程式の形と、一般解をどなたかお教えください。 またこのことを詳しく説明しているURLをご存知ならそちらも教えてくだされば幸いです。