衝突速度の規格化と衝突速度の計算方法

このQ&Aのポイント
  • 衝突速度の規格化の概要と、二体近似での衝突速度の計算方法を説明します。
  • 二次元の場合と三次元の場合での衝突速度の計算方法の違いについて説明します。
  • 二次元の場合の衝突速度について詳細に説明します。
回答を見る
  • ベストアンサー

『この文章の和訳をお願いします』という質問の補足

以前、ddeana様に和訳して頂いた英文の質問の補足です。 文中のいくつかの式において、記号の誤植が見つかりましたので、お詫びして訂正させていただきます。 該当質問URL↓ http://okwave.jp/qa/q8267587.html (1) (誤)<P(e,0)>_2B=(2/π)E(√(3/4))ρ_(2D)v,                     (28) (正)<P(e,0)>_2B=(2/π)E(√(3/4))σ_(2D)v,                     (28) ρ→σの誤りでした。 同様に (誤)ρ_(2D)v (正)σ_(2D)v 以下は既に補足済みのものです。 (2) (誤) <P(e,i)>_2B=(2/π)^2E(k)πr_p^2{1+(6/(r_p(e^2+i^2)) }(e^2+i^2)^(1/2)/(2i),      (29) (正) <P(e,i)>_2B=((2/π)^2)E(k)πr_p^2{1+6/(r_p(e^2+i^2))}(e^2+i^2)^(1/2)/(2i),       (29) 以下は誤りを訂正した正しい英文です。 5. Normalization of collisional rate First, we introduce an enhancement factor defined as the ratio of the collisional rate <P(e, i)> to that in the two-body approximation <P(e, i)>_2B: R(e, i)= <P(e, i)>/ <P(e, i)>_2B.   (27) The factor R(e, i) gives a measure of the collisional rate enhancement due to the effect of solar gravity. In the two-dimensional case, <P(e,0)> is given by Eq. (11) while <P(e, 0)>_2B is defined by <P(e,0)>_2B=(2/π)E(√(3/4))σ_(2D)v,    (28) where E(k) is the second kind complete elliptic integral and σ_(2D)v is given by Eq. (3) with <e(2/2)> replaced by e^2 (note that the units are changed, i.e., v=(e^2+i^2)^(1/2) and Gm_p=3). The numerical coefficient 2E(k)/π(=0.77) is introduced so that the collisional rate <P(e,0)>_2B coincides with <P(e,0)> in the high energy limit, v→∞ (see Paper I and Greenzweig and Lissauer, 1989). In the three-dimensional case, <P(e,i)> is given by Eq. (10) while <P(e, i)>_2B by Eq. (1) with <e(2/2) > and <i(2/2)> replaced, respectively, by e^2 and i^2. It should be noticed that <P(e,i)> has the dimension per unit surface number density n_s. Then, we define <P(e,i)>_2B by nσv/n_s; (n_s/n) corresponds to twice the scale height (in the z-direction) of a swarm of planetesimals. Usually, the scale height is taken to be i*a_0* (i.e., i, in the units here). As in the two-dimensional case, we require that <P(e,i)>_2B must coincide with <P(e,i)> in the high energy limit. Then, by introducing the numerical coefficient (2/π)^2E(k) (=0.49~0.64) (see Paper I), we have <P(e,i)>_2B=((2/π)^2)E(k)πr_p^2{1+6/(r_p(e^2+i^2))}(e^2+i^2)^(1/2)/(2i), (29) with k^2=3e^2/4(e^2+i^2). (30) 6. The collisional rate for the two-dimensional case In this section, we concentrate on the collisional rate for the two-dimensional case where i=0. In this case, the small degrees of freedom of relative motion allow us to investigate in detail behaviors of orbital motion: it is sufficient to find collision orbits only in the b-τ two-dimensional phase space for each e, as seen in Eq. (11). お寄せ頂いた和訳↓ 5.衝突速度の規格化 まず、衝突速度<P(e, i)>と二体近似での衝突速度<P(e, i)>_2Bとの比として、促進係数を導入する。 R(e, i)=<P(e, i)>/<P(e, i)>_2B. (27) 係数R(e, i)は、太陽重力の影響による衝突速度増大の尺度を与えてくれる。二次元において<P(e, 0)>は方程式(11)の通りだが、<P(e, 0)>_2Bは次のように定義される。 <P(e, 0)>_2B=(2/π)E(√(3/4))σ_(2D)v,   (28) ここでのE(k)(※1)は第2種完全楕円積分(※2)であり、σ_(2D)vは方程式(3)を用い、<e(2/2)>をe^2に置き換えることで与えられる(単元が変更されることに留意されたし。例えばvは(e^2+i^2)^(1/2)となりGm_pは3となる)。数値係数2E(k)/π(=0.77)が導入され、衝突速度<P(e, 0)>_2Bは高エネルギー限界(vが限りなく無限大に近づくところ)において<P(e, 0)>と一致する(第一論文と1989年グリーンバーグとリシャールによる論文を参照のこと)。  3次元の場合、<P(e, i)>は方程式(10)によって求められるが、<P(e, i)>_2Bは方程式(1)の<e(2/2)>をe^2に、<i(2/2)>をi^2にそれぞれ置き換えることで求められる。なお、<P(e, i)>が表面数密度n_s単位あたりの次元を有することに留意されたい。その後nσv/n_sによって<P(e, i)>_2Bを定義する。尚、(n_s/n)は微惑星集団のスケールハイト(※3)(z方向での)の2倍に相当する。通常スケールハイトはi*a_0*とみなされている(すなわち、ここでの単位)。二次元の場合と同様に、<P(e, i)>_2Bは高エネルギー限界で必ず<P(e, i)>と一致することが要求される。その後数値係数(2/π)^2E(k) (=0.49~0.64)(第1論文参照)を導入することにより次のような式が求められる。 <P(e, i)>_2B=((2/π)^2)E(k)πr_p^2{1+6/(r_p(e^2+i^2))}(e^2+i^2)^(1/2)/(2i),   (29) それと   k^2=3e^2/4(e^2+i^2).  (30) 6.二次元の場合の衝突速度 この章では iが0である二次元の場合の衝突速度に焦点をあわせることとする。このケースでは相対運動の自由度における柔軟性により軌道運動の詳細な動きを研究することが可能となる。つまり方程式(11)に見られるように各eについて b-τ二次元位相空間の中での衝突軌道のみを見つけることで十分なのである。 ※1:カッコ内のkは母数、modulusのことです。 ※2:楕円積分については下記をご参照ください。 http://ja.wikipedia.org/wiki/%E6%A5%95%E5%86%86%E7%A9%8D%E5%88%86 ※3:地表面の大気圧に対して 気圧がe-1 になる高度のこと。また惑星の大気は高度とともに指数関数に従って減少しますが、どの高度でも同じ気圧を持つ仮想的な大気で惑星を脱出する大気の割合を考える場合は、この仮想大気の高度の上限のことをスケールハイトと呼びます。

  • 英語
  • 回答数1
  • ありがとう数17

質問者が選んだベストアンサー

  • ベストアンサー
  • ddeana
  • ベストアンサー率74% (2976/4019)
回答No.2

ddeanaです。 わざわざの補足恐縮ですが、他の方が質問を探してしまうかもしれませんので、締め切った質問の補足などがあった場合はまだ締め切っていない質問の回答に関する補足などを使っていただいてかまいません。また訂正が直接訳の内容に変化を与えるような場合だけで結構です。宜しくお願いいたします。

mamomo3
質問者

お礼

他の方にご迷惑をおかけする恐れのある質問をしてしまい、大変失礼しました。 このようなことのないよう、細心の注意を払って参りたいと思います。

関連するQ&A

  • この英文の和訳をお願いします。

    5. Normalization of collisional rate First, we introduce an enhancement factor defined as the ratio of the collisional rate <P(e, i)> to that in the two-body approximation <P(e, i)>_2B: R(e, i)= <P(e, i)>/ <P(e, i)>_2B (27) The factor R(e, i) gives a measure of the collisional rate enhancement due to the effect of solar gravity. In the two-dimensional case, <P(e,0)> is given by Eq. (11) while <P(e, 0)>_2B is defined by <P(e,0)>_2B=(2/π)E(√(3/4))ρ_(2D)v, (28) where E(k) is the second kind complete elliptic integral and ρ_(2D)v is given by Eq. (3) with <e(2/2)> replaced by e^2 (note that the units are changed, i.e., v=(e^2+i^2)^(1/2) and Gm_p=3). The numerical coefficient 2E(k)/π(=0.77) is introduced so that the collisional rate <P(e,0)>_2B coincides with <P(e,0)> in the high energy limit, v→∞ (see Paper I and Greenzweig and Lissauer, 1989). In the three-dimensional case, <P(e,i)> is given by Eq. (10) while <P(e, i)>_2B by Eq. (1) with <e(2/2) > and <i(2/2)> replaced, respectively, by e^2 and i^2. It should be noticed that <P(e,i)> has the dimension per unit surface number density n_s. Then, we define <P(e,i)>_2B by nσv/n_s; (n_s/n) corresponds to twice the scale height (in the z-direction) of a swarm of planetesimals. Usually, the scale height is taken to be i*a_0* (i.e., i, in the units here). As in the two-dimensional case, we require that <P(e,i)>_2B must coincide with <P(e,i)> in the high energy limit. Then, by introducing the numerical coefficient (2/π)^2E(k) (=0.49~0.64) (see Paper I), we have <P(e,i)>_2B=(2/π)^2E(k)πr_p^2{1+(6/(r_p(e^2+i^2)) }(e^2+i^2)^(1/2)/(2i), (29) with k^2=3e^2/4(e^2+i^2). (30) 6. The collisional rate for the two-dimensional case In this section, we concentrate on the collisional rate for the two-dimensional case where i=0. In this case, the small degrees of freedom of relative motion allow us to investigate in detail behaviors of orbital motion: it is sufficient to find collision orbits only in the b-τ two-dimensional phase space for each e, as seen in Eq. (11). 長文ですが、よろしくお願いします。

  • 以前和訳していただいた英文の誤記について

    以前、ddeana様に和訳して頂いた英文の補足です。 文中のいくつかの式において、記号の誤植が見つかりましたので、お詫びして訂正させていただきます。 該当質問URL↓ http://okwave.jp/qa/q8267587.html (1) (誤)<P(e,0)>_2B=(2/π)E(√(3/4))ρ_(2D)v,                     (28) (正)<P(e,0)>_2B=(2/π)E(√(3/4))σ_(2D)v,                     (28) ρ→σの誤りでした。 同様に (誤)ρ_(2D)v (正)σ_(2D)v 以下は既に補足済みのものです。 (2) (誤) <P(e,i)>_2B=(2/π)^2E(k)πr_p^2{1+(6/(r_p(e^2+i^2)) }(e^2+i^2)^(1/2)/(2i),      (29) (正) <P(e,i)>_2B=((2/π)^2)E(k)πr_p^2{1+6/(r_p(e^2+i^2))}(e^2+i^2)^(1/2)/(2i),       (29) 以下は誤りを訂正した正しい英文です。 5. Normalization of collisional rate First, we introduce an enhancement factor defined as the ratio of the collisional rate <P(e, i)> to that in the two-body approximation <P(e, i)>_2B: R(e, i)= <P(e, i)>/ <P(e, i)>_2B.   (27) The factor R(e, i) gives a measure of the collisional rate enhancement due to the effect of solar gravity. In the two-dimensional case, <P(e,0)> is given by Eq. (11) while <P(e, 0)>_2B is defined by <P(e,0)>_2B=(2/π)E(√(3/4))σ_(2D)v,    (28) where E(k) is the second kind complete elliptic integral and σ_(2D)v is given by Eq. (3) with <e(2/2)> replaced by e^2 (note that the units are changed, i.e., v=(e^2+i^2)^(1/2) and Gm_p=3). The numerical coefficient 2E(k)/π(=0.77) is introduced so that the collisional rate <P(e,0)>_2B coincides with <P(e,0)> in the high energy limit, v→∞ (see Paper I and Greenzweig and Lissauer, 1989). In the three-dimensional case, <P(e,i)> is given by Eq. (10) while <P(e, i)>_2B by Eq. (1) with <e(2/2) > and <i(2/2)> replaced, respectively, by e^2 and i^2. It should be noticed that <P(e,i)> has the dimension per unit surface number density n_s. Then, we define <P(e,i)>_2B by nσv/n_s; (n_s/n) corresponds to twice the scale height (in the z-direction) of a swarm of planetesimals. Usually, the scale height is taken to be i*a_0* (i.e., i, in the units here). As in the two-dimensional case, we require that <P(e,i)>_2B must coincide with <P(e,i)> in the high energy limit. Then, by introducing the numerical coefficient (2/π)^2E(k) (=0.49~0.64) (see Paper I), we have <P(e,i)>_2B=((2/π)^2)E(k)πr_p^2{1+6/(r_p(e^2+i^2))}(e^2+i^2)^(1/2)/(2i), (29) with k^2=3e^2/4(e^2+i^2). (30) 6. The collisional rate for the two-dimensional case In this section, we concentrate on the collisional rate for the two-dimensional case where i=0. In this case, the small degrees of freedom of relative motion allow us to investigate in detail behaviors of orbital motion: it is sufficient to find collision orbits only in the b-τ two-dimensional phase space for each e, as seen in Eq. (11). お寄せ頂いた和訳↓ 5.衝突速度の規格化 まず、衝突速度<P(e, i)>と二体近似での衝突速度<P(e, i)>_2Bとの比として、促進係数を導入する。 R(e, i)=<P(e, i)>/<P(e, i)>_2B. (27) 係数R(e, i)は、太陽重力の影響による衝突速度増大の尺度を与えてくれる。二次元において<P(e, 0)>は方程式(11)の通りだが、<P(e, 0)>_2Bは次のように定義される。 <P(e, 0)>_2B=(2/π)E(√(3/4))σ_(2D)v,   (28) ここでのE(k)(※1)は第2種完全楕円積分(※2)であり、σ_(2D)vは方程式(3)を用い、<e(2/2)>をe^2に置き換えることで与えられる(単元が変更されることに留意されたし。例えばvは(e^2+i^2)^(1/2)となりGm_pは3となる)。数値係数2E(k)/π(=0.77)が導入され、衝突速度<P(e, 0)>_2Bは高エネルギー限界(vが限りなく無限大に近づくところ)において<P(e, 0)>と一致する(第一論文と1989年グリーンバーグとリシャールによる論文を参照のこと)。  3次元の場合、<P(e, i)>は方程式(10)によって求められるが、<P(e, i)>_2Bは方程式(1)の<e(2/2)>をe^2に、<i(2/2)>をi^2にそれぞれ置き換えることで求められる。なお、<P(e, i)>が表面数密度n_s単位あたりの次元を有することに留意されたい。その後nσv/n_sによって<P(e, i)>_2Bを定義する。尚、(n_s/n)は微惑星集団のスケールハイト(※3)(z方向での)の2倍に相当する。通常スケールハイトはi*a_0*とみなされている(すなわち、ここでの単位)。二次元の場合と同様に、<P(e, i)>_2Bは高エネルギー限界で必ず<P(e, i)>と一致することが要求される。その後数値係数(2/π)^2E(k) (=0.49~0.64)(第1論文参照)を導入することにより次のような式が求められる。 <P(e, i)>_2B=((2/π)^2)E(k)πr_p^2{1+6/(r_p(e^2+i^2))}(e^2+i^2)^(1/2)/(2i),   (29) それと   k^2=3e^2/4(e^2+i^2).  (30) 6.二次元の場合の衝突速度 この章では iが0である二次元の場合の衝突速度に焦点をあわせることとする。このケースでは相対運動の自由度における柔軟性により軌道運動の詳細な動きを研究することが可能となる。つまり方程式(11)に見られるように各eについて b-τ二次元位相空間の中での衝突軌道のみを見つけることで十分なのである。 ※1:カッコ内のkは母数、modulusのことです。 ※2:楕円積分については下記をご参照ください。 http://ja.wikipedia.org/wiki/%E6%A5%95%E5%86%86%E7%A9%8D%E5%88%86 ※3:地表面の大気圧に対して 気圧がe-1 になる高度のこと。また惑星の大気は高度とともに指数関数に従って減少しますが、どの高度でも同じ気圧を持つ仮想的な大気で惑星を脱出する大気の割合を考える場合は、この仮想大気の高度の上限のことをスケールハイトと呼びます。

  • この文章の和訳をお願いします。

    1. Introduction This is the third of a series of papers in which we have investigated the collisional probability between a protoplanet and a planetesimal, taking fully into account the effect of solar gravity. Until now, the collisional probability between Keplerian particles has not been well understood, despite of its importance, in the study of planetary formation and, as an expedient manner, the two-body (i.e., free space) approximation has been adopted. In the two-body approximation, the collisional rate is given by (e.g., Safronov,1969) σv=πr_p^2(1+(2Gm_p/r_pv^2))v, (1) where r_p and m_p are the sum of radii and the masses of the protoplanet and a colliding planetesimal, respectively. Furthermore, v is the relative velocity at infinity and usually taken to be equal to a mean random velocity of planetesimals, i.e., v=(<e_2*^2>+<i_2*^2>)^(1/2)v_K, (2) where <e_2*^2> and <i_2*^2> are the mean squares of heliocentric eccentricity and inclination of a swarm of planetesimals and v_K is the Keplerian velocity; in the planer problem (i.e., <i_2*^2>=0), the collisional rate is given, instead of Eq.(1), by (σ_2D)v=2r_p(1+(2Gm_p/r_pv^2))^(1/2)v. (3) Equations (1) and (3) will be referred to in later sections, to clarify the effect of solar gravity on the collisional rate. よろしくお願いします。

  • この文章の和訳をお願いします。

    The obtained collisional rate is summarized in terms of the normalized eccentricity e and inclination i of relative motion; the normalized eccentricity e and inclination i of relative motion; the normalization is based on Hill’s framework, i.e., e=e*/h and i=i*/h where e* and i* are ordinary orbital elements and h is the reduced Hill radius defined by (m_p/3M_? )^(1/3) (m_p being the protoplanet mass and M_? the solar mass). The properties of the obtained collisional rate <P(e,i)> are as follows: (i) <P(e,i)> is like that in the two-dimensional case for i≦0.1 (when e≦0.2) and i≦0.02/e (when e≧0.2), (ii) except for such a two-dimensional region, <P(e,i)> is always enhanced over that in the two-body approximation <P(e,i)>_2B, (iii) <P(e,i)> reduces to <P(e,i)>_2B when (e^2+i^2)^(1/2)≧4, and (iv) there are two notable peaks in <P(e,i)>/ <P(e,i)>_2B at regions where e≒1 (i<1) and where i≒3 (e<0.1); the peak values are at most as large as 5. As an order of magnitude, the collisional rate between Keplerian particles can be described by that of the two-body approximation suitably modified in the two-dimensional region. However, the existence of the peaks in <P(e,i)>/ <P(e,i)>_2B are characteristic to the three-body problem and would give an important insight to the study of the planetary growth. お手数ですがよろしくお願いいたします。

  • この英文の和訳をお願いします。

        The numbers of collision orbits found in the present calculations are shown in Table 4 for the representative sets of (e,i). From these numbers we can expect the magnitude of statistical error in the evaluation of <P(e,i)> to be a few percent for small e, i and within 10% for large e, i for r_p=0.005 are shown in Table 5, together with those of the two-dimensional case. Interpolating these values, we have obtained the contour of <P(e,i)> and R(e,i) on the e-I plane. They are shown in Figs. 14 and 15. From Fig. 15 we can read out the general properties of the collisional rate in the three-dimensional case: (i) <P(e,i)> is enhanced over <P(e,i)>_2B except for small e and i, (ii) <P(e,i)> reduces to <P(e,i)>_2B for (e^2+i^2)^(1/2)≧4, and (iii) there are two peaks in R(e,i) near regions where e≒1 (i<1) and where i≒3 (e<0.1): the peak value is at most as large as 5.      In the vicinity of small v(=(e^2+i^2)^(1/2)) and i, R(e,i) rapidly reduces to zero. This is due to a singularity of <P(e,i)>_2B at v=0 and i=0 in the ordinary expression given by Eq. (29) and hence unphysical; the behavior of collisional rate in the vicinity of small v and i will be discussed in detail later. Thus, we are able to assert, more strongly, the property (i) mentioned in the last paragraph: that is, solar gravity always enhances the collisional rate over that of the two-body approximation.      One of the remarkable features of R(e,i) found in Fig. 15 is the property (ii). That is, the collisional rate between Keplerian particles is well described by the two-body approximation, for (e^2+i^2)^(1/2)≧4. This is corresponding to the two-dimensional result that R(e,0)≒1 for e≧4. よろしくお願いします。

  • この文章の和訳をお願いします。

    Fig. 8. Contours of minimum separation distance r_min in the second encounter for the case of (e, i, b)=(1.0, 0.5, 2.8). Dots have the same meanings as those in Fig. 7. Fig. 9. The “Differential” collisional rate <p(e, i, b)> (defined by Eq. (24)) is plotted as a function of b in the case of (e, i)=(1.0, 0.5). Fig. 8.↓ http://www.fastpic.jp/images.php?file=4403322728.jpg Fig. 9.↓ http://www.fastpic.jp/images.php?file=9905093670.jpg よろしくお願いします。

  • この文章の和訳をお願いします。

    Table 3. Numbers of two-dimensional collision orbits (i=0) found by our orbital calculations. Only four cases of e are tabulated as examples. The numbers of collision orbits decrease with the decrease in the planetary radius r_p. Fig.11. The two-dimensional enhancement factor R(e,0) as a function of e for r_p=0.005, 0.001, and 0.0002. The enhancement factor depends rather weakly on r_p. Fig.12. The collisional flux F(e,E) defined by Eq. (32) as a function of the Jacobi energy E for e=0, 0.5, 1.0, and 2.0. ↓Table 3. http://www.fastpic.jp/images.php?file=0416143752.jpg ↓Fig.11. http://www.fastpic.jp/images.php?file=9556242912.jpg ↓Fig.12. http://www.fastpic.jp/images.php?file=1594984078.jpg よろしくお願いします。

  • この文章の和訳をお願いします。

    Accordingly, in our study, it is sufficient to try to find collision orbits with a limited range of b, i.e., b_min<b<b_max. Thus, the collisional rate <P(e, i)> is written practically as (see Eq. (10)) <P(e, i)>=∫[b_max→b_max](3/2)db(4b/(2π)^2)∫[0→2π]dτ∫[0→π]dωp_col(e, i, b, τ,ω).         ・・・・・・(14) Unfortunately, we cannot predict b_min and b_max definitely. As to b_max, we only know its upper limit from the Jacobi integral E of Hill’s equations, given by (see Hayashi et al., 1977 and Paper I), E=(1/2){e(r)^2+i(r)^2}-(3/8)b(r)^2-(3/r)+(9/2). ・・・・・・(15) Particles with E<0 cannot enter the Hill sphere and never collide with the protoplanet. The condition E>0 yields an upper limit of b_max, in terms of orbital elements at infinity (r→∞), b_max<{(4(e^2+i^2)/3)+12}^(1/2).    ・・・・・・(16) By the following consideration, a lower limit of b_min can also be estimated. First, we will find a turn-off point of the horseshoe orbit of the guiding center (see Fig.1). In the two-dimensional case, Hénon and Petit (1986) have found that the variation of e is much smaller than that of b at a large distance. This suggests that, as a first order approximation, we can neglect the variations of e and I compared to the b variation also in the three-dimensional case. Thus, assuming that both e and I are invariant, we have from Eq. (15) b(r)^2+(8/r)=b^2,        ・・・・・・(17) where b is the semimajor axis at infinity. Fig.1. Example of an orbit with small b. Dashed curve denotes the trajectory of the guiding center. Turn-off point of the guiding center y_t and Hill sphere (x^2+y^2=1) are also shown. 長文ですがよろしくお願いします。

  • この英文の和訳をお願いします。

    As mentioned above, there are two peaks in R(e,i) in the e-i diagram: one is at e≒1 (i<1) and the other at i≒3 (e<0.1). The former corresponds directly to the peak in R(e,0) at e≒1 found in the two-dimensional case. The latter is due to the peculiar nature to the three-dimensional case, as understood in the following way. Let us introduce r_min (i, b,ω) in the case of e=0, which is the minimum distance during encounter between the protoplanet and a planetesimal with orbital elements i, b, and ω. In Fig. 16, r_min(i,b)=min_ω{r_min(i,b,ω)} is plotted as a function of b for various i, where r_min<r_p (=0.005) means “collision”; there are two main collision bands at b≒2.1 and 2.4 for i=0. For i≦2, these bands still exist, shifting slightly to small b. This shift is because a planetesimal feels less gravitational attracting force of the protoplanet as i increases. As i increases further, the bands approach each other, and finally coalesce into one large collision band at i≒3.0; this large band vanish when i≧4. In this way, the peculiar orbital behavior of three-body problem makes the peak at i≒3 (e<0.1). Though there are the peaks in R(e,i), the peak values are not so large: at most it is as large as 5. This shows that the collisional rate is well described by that of the two-body approximation <P(e,i)>_2B except for in the vicinity of v, i→0 if we neglect a difference of a factor of 5. Now we propose a modified form of <P(e,i)>_2B which well approximates the calculated collisional rate even in the limit of v, i→0. We find in Fig.14 that <P(e,i)> is almost independent of i, i.e., it behaves two-dimensionally for i≦{0.1 (when e≦0.2), {0.02/e (when e≧0.2). (35) This transition from three-dimensional behavior to two-dimensional behavior comes from the fact that the isotropy of direction of incident particles breaks down for the case of very small i (the expression <P(e,i)>_2B given by Eq. (29) assumes the isotropy). In other words, as an order of magnitude, the scale height of planetesimals becomes smaller than the gravitational radius r_G=σ_2D/2 (σ_2D given by Eq. (3)) and the number density of planetesimals cannot be uniform within a slab with a thickness σ_2D for small i. Table 4. Numbers of three-dimensional collision events found by orbital calculations for the representative sets of e and i. In the table r_p is the radius of the protoplanet. Table 5. The three-dimensional collision rate <P(e,i)> for the case of r_p=0.005 (r_p being the protoplanetary radius), together with two-dimensional <P(e,i=0)> Fig. 14. Contours of the evaluated <P(e,i)>, drawn in terms of log_10<P(e,i)> Fig. 15. Contours of the enhancement factor R(e,i) Table 4.↓ http://www.fastpic.jp/images.php?file=1484661557.jpg Table 5.↓ http://www.fastpic.jp/images.php?file=6760884829.jpg Fig. 14. &Fig. 15.↓ http://www.fastpic.jp/images.php?file=8798441290.jpg 長文になりますが、よろしくお願いします。

  • この英文の和訳をお願いします。

         We evaluated <P(e, 0)> for 12 cases of e between 0 and 6: e=0.0, 0.01, 0.1, 0.5, 0.75, 0.9, 1.0, 1.2, 1.5, 2.0, 4.0, and 6.0. As for r_p, we considered three cases: r_p=0.005, 0.001, and 0.0002. These are representative values of radii of protoplanets at the Earth, Jupiter, and Neptune orbits regions, respectively. The numbers of collision orbits found by our orbital calculation are shown in Table 3 for representative values of e. From Table 3 we can expect the statistical errors in the evaluated collisional rate to be within 5% for the cases of e≦1.5 and within 8% for e=4 and 6; they are smaller than that of the previous studies by Nishida (1983) and by Wetherill and Cox (1985).    The calculated collisional rate is summarized in terms of the enhancement factor defined by Eq. (27) and shown in Fig.11, as a function of e and r_p. From Fig.11 one can see that the collisional rate is always enhanced by the effect of solar gravity, compared with that of the two-body approximation <P(e,0)>_2B. In particular, in regions where e≦1, R(e,0) is almost independent of e, having a value as large as 3. At e≦1, R(e,0) has a notable peak beyond which the enhancement factor decreases gradually with increasing e. For large values of e, i.e., e≧4, <P(e,0)> tends rapidly to <P(e,0)>_2B. As seen in the next section, we will find a similar dependence on e even in the three-dimensional case (i≠0) as long as we are concerned with cases where i≦2. お手数ですが、よろしくお願いします。