[P189について] 線形代数入門

このQ&Aのポイント
  • 線形代数入門の斉藤正彦氏のP189について質問です。特性ジョルダン細胞とは何か、次数の最大とはどう定められるのか、わからない点があります。詳しい方に教えていただきたいです。
  • 斉藤正彦氏の線形代数入門のP189についての質問です。特性ジョルダン細胞についての説明と次数の最大の求め方について教えてください。
  • 質問です。線形代数入門の斉藤正彦氏のP189について、特性ジョルダン細胞と次数の最大についての説明がわかりません。詳しい方にお願いできないでしょうか。
回答を見る
  • ベストアンサー

[P189について]線形代数入門

斉藤正彦氏の線形代数入門p189について質問です。 中段に書いてある、Jの相違なる固有値をα_1 α_2・・・とする 各α_i に対するxE-Jの特性ジョルダン細胞のうち、次数の最大のものを取り、 それらの直和をK_1とする。 ただし、あるα_i に対する最大次数の特性ジョルダン細胞が『2つ』以上ある場合は、 そのうちの一方を取る。 xE-Jの特性ジョルダン細胞っていうのは一体何のことなんでしょうか。 また、次数の最大とは・・・? 私がこんがらがっているのは、 (1)Jの固有値α_iを1つ考える ↓ (2)その固有値のジョルダン細胞を考える。 ↓ (3)次数が最大って??どうやってその次数が定められているのだろうか? みたいなかんじで、全く意味がわかりません。 どなたかご教示願えないでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

「特性ジョルダン細胞」って言うかな、普通? ジョルダン細胞とは、対角線分がひとつの共通値をとり、 (列番号)-(行番号)=1 の成分の値が 1 である行列のこと。 ジョルダン標準形は、対角部分がジョルダン細胞である ようなブロック対角行列のことです。 行列の、ひとつの固有値に対するジョルダン細胞は、 一個とは限りません。例えば、下記のジョルダン標準形で 7 0 0 0 0  0 5 1 0 0 0 0 5 1 0 0 0 0 5 0 0 0 0 0 5 固有値 5 に対するジョルダン細胞は、 3 次の 5 1 0 0 5 1 0 0 5 と、 1 次の 5 の計二個です。 各ジョルダン細胞の次数の和が、特性多項式における その固有値の重複度と一致します。 上記の例で、固有値 5 のジョルダン細胞の「最大次数」 と言えば、3 と 1 の中で最大… 3 次ですね。 ある固有値に対するジョルダン細胞の最大次数は、 行列の最小多項式におけるその固有値の重複度と一致します。

関連するQ&A

  • 線形代数学の教科書

    大学工学部の線形代数学の、問題が豊富で、その解説の詳しい参考書を探しています。線形代数ではありません。具体的にいうと面積・体積と行列式、行列式の計算、余因子行列とクラーメルの公式、固有値と固有ベクトル、正方行列と対角化、内積と転置行列、直行行列と実対称行列の対角化、二次形式の標準化、一般固有空間、ジョルダン標準形が載っているものです。

  • 線形代数 証明

    線形代数の証明がわからず困ってます>_<; rank(A)=r ⇔ Aの小行列のうち行列式が0でないものの最大次数はrである。 この定理の証明がわかりません… わかる方いらっしゃいましたら よろしくお願いいたします!

  • 線形代数の固有値の問題がわかりません。

    線形代数についての以下の問題がわからないので、過程も含めて解答を教えて下さい。 実2次形式Q(x)=  Σn i=1 Σn j=1 (hij xi xj)、hij = hji (∀i,j = 1,2,...n)とする。Σn i=1 xi^2 = 1 の条件のもとで、Q(x)の最大値は係数行列H=(hij)の固有値の最大値と一致することを証明せよ。

  • 線形代数の問題で・・・

    線形代数の問題で解答がない証明問題でどうしてもわからない問題があるので教えてください。 問題内容は、  (i,j)成分がaij = |i-j|であるn次正方行列Aについて、 |A|= {(-1)^(n-1)}(n-1)2^(n-2) となることを証明せよ。 です。 ちなみに問題は教養の線形代数という本にある問題です。 教えてください。 お願いします。

  • 3×3行列ジョルダン標準正規

    ジョルダン細胞の数と次数の考え方。 間違っていたら指摘して下さい。 3×3行列について (1)固有値が3つ異なる場合 α≠β≠γ それぞれの固有空間の階数(rank)は、2なので、それぞれの固有空間の次 元は1次元。 従って、ジョルダン細胞の次元は1次。1つの固有値に対するジョルダン細胞の数も1個。 J=J(α,1)+J(β,1)+J(γ,1) (2) 固有値が3重根の場合 (1)固有空間のrankが2の場合 固有空間の次元は、3-2=1次元。 固有ベクトルは、1つだけ。 よってジョルダン細胞は1個。 行列が3次なので、3次のジョルダン細胞が1個。 J=J(α,3) ここで、(A-αE)^2≠0、(A-αE)^3=0になるが、この計算は不要。 (2)固有空間のrankが1の場合 固有空間の次元は、3-1=2次元。 2次元上で独立な固有ベクトルは、2つ以上取れる。 ジョルダン細胞の数は2個。 3次元行列であるから、2個のジョルダン細胞は、2次1個と1次1個になる。 よって、J=J(α,1)+J(α,2) (3)固有値が2個が重根、1個単根の場合。 固有値=α(重根)、βとする。 (1)αに対する固有空間のrankが2の場合 固有空間の次元は、3-2=1次元。 ジョルダン細胞の数は1個。 1次元だからαの固有ベクトルは1個だけ。 βは単根だから、固有空間の次元は1次元で固有ベクトルは1個だけでジョルダン細胞の次元も1次。3次元行列だから、αに対するジョルダン細胞の次数は、3-1=2次元でなければいけない。 よって、J=J(α,2)+J(β,1) (2)αに対する固有空間のrankが1の場合 固有空間の次元は3-1=2次元。 2次元なので、固有ベクトルは2つ以上取れる。 ジョルダン細胞は2個でそれぞれ1次。 βに対するジョルダン細胞は上記と同じ。 よって、J=J(α,1)+J(α,1)+J(β,1)

  • ジョルダン標準形の作り方

    固有ベクトルを求めずに、固有値だけでジョルダン標準形を求めるやり方を教えて下さい。 自分のやり方の間違っている点や不十分なところを指摘して下さい。 例題 A= [2 0 -1] [-2 3 2 ] [1 0 0] のジョルダン標準形を求めなさい。 解法 (1)固有多項式で固有値を求める。 固有多項式Ψ(λ)=(λ-3)(λ-1)^2 λ=1(重解)、3 (2)それぞれの固有値におけるジョルダン細胞の個数を求める。 「1つの固有値に対する互いに独立な固有ベクトルの本数(固有空間の次元数)は、その固有値に対するジョルダン細胞の個数に等しい」ので、 つまり、固有空間の次元数=dim(A-λE)=n-rank(A-λE)=ジョルダン細胞数なので、 λ=3の時、 rank(A-3E)=2 dim(A-3E)=3-2=1 λ=1に対して、ジョルダン細胞1つ。 λ=1について rank(A-E)=2 dim(A-E)=3-2=1 よってλ=1に対して、 ジョルダン細胞1つ。 (3)次にジョルダン細胞の次数を求める。 (A-3E)(A-E)≠0 (A-3E)(A-E)^2=0 より、最小多項式は (λ-3)(λ-1)^2なので、 λ=3のジョルダン細胞の次数は1 λ=1のジョルダン細胞の次数は2 よってJ=J(3,1)➕J(1,2) (➕は、+の丸囲み) J= [3 0 0] [0 1 1] [0 0 1] 一応、答えは出ました。これで間違いないですか? しかし、私のやり方では、(3)でわざわざ、 (A-3E)(A-E)^2を計算しなくてはいけません。 これがけっこう面倒です。 そうではなく、最小多項式を求めなくてもいいやり方を教えてほしいのです。

  • 線型代数学(エルミート変換、ユリタリ変換について)

    教科書(線型代数入門 齋藤正彦著)のとある問、 1.『エルミート変換の固有値は全て実数で、ユリタリ変換の固有値はすべて絶対値が1の複素数である』 2.『任意の線型変換Tに対し、T*Tは、半正値エルミート変換である』 ということはなんとなく感覚的には分かるし、どちらもなんとなくの自分で証明(高校でやるような幼稚っぽい感じの証明)もできたのですが、ちゃんとした論理立てた証明をつくれなくて困っています。 解説してくださる方よろしくお願いしますm(_ _)m

  • 線形代数

    線形代数の問題で以下のようなものがでたんですが、答えも解説もないためわかりません。教科書には「δ(ij)={1(i=j),0(J≠j) を表し、クロネッカーのデルタ記号という」としか載っていなく理解できませんでした。 C=C(ij)  C(ij)=δ(ij-1) とする。 C^2=d(ij) としてd(ij)をクロネッカーのデルタであらわせ。 というもんだいでした。 どなたか教えてください。お願いします

  • 線形代数の質問です

    閲覧ありがとうございます!大学数学の線形代数についての質問です。 見づらいかもしれませんが、どなたか回答を出来るだけわかりやすく教えていただきたいです… よろしくお願いします! 問題:n次対称行列Aの最大の固有値をα、最小の固有値をβとすると次が成立することを示せ。 ここで(,)は実数を成分とするn次列ベクトル全体のなす集合の標準内積を表す。また、〔 〕はsup,infの範囲を示す。 α=sup(Ax,x)〔||x||=1〕=sup(Ax,x)/ (x,x)〔x≠0〕 β=inf(Ax,x)〔||x||=1〕=inf(Ax,x)/ (x,x)〔x≠0〕 関係ないかもしれませんが、補足:一般に特性方程式を解いて固有値を求めることは困難であるが、対称行列の場合にその固有値を解析的に求めるあるいは評価する方法として上記の事実が使われる。 よろしくお願いします!

  • 線形代数の問題ですが、

    線形代数の問題ですが、 A>Bであるからといって、aij>bijが成り立つとは限らない。 また逆に、すべてのi,jにおいてaij>bijであるからといってA>Bが成り立つとは限らないことを例によって示せ。 分かる方がいらしたら、教えていただけませんでしょうか。