• ベストアンサー

極限値をあらわす

f(x)が微分可能なとき次の極限値をf(a),f ’(a)であらわす問題で 1、lim f(a+2h)-f(a) / h   h→∞ 2、lim x^2・f(a)-a^2・f(x) / x-a    x→a の解き方を教えてください A 1、2f ’(a) 2、2a・f(a)-a^2・f ’(a)

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

1 2h=kとおけば lim f(a+2h)-f(a) / h h→∞ =lim f(a+k)-f(a) / (k/2) k→∞ =2lim f(a+k)-f(a) / k k→∞ =2f'(a) 2 lim {x^2・f(a)-a^2・f(x)} / (x-a) x→a =lim {x^2・f(a)-a^2・f(x)} / (x-a) x→a =lim {(x^2-a^2)f(a)-a^2・(f(x)-f(a))} / (x-a) x→a =lim {(x+a)(x-a)f(a)-a^2・(f(x)-f(a))} / (x-a) x→a =lim (x+a)(x-a)f(a) / (x-a) x→a -lim a^2・(f(x)-f(a)) / (x-a) x→a =lim (x+a)f(a) x→a -lim a^2・(f(x)-f(a)) / (x-a) x→a =(a+a)f(a) -(a^2)lim (f(x)-f(a)) / (x-a) x→a =2a・f(a)-a^2・f'(a)

その他の回答 (1)

回答No.2

1.h→∞であるとf(a+2h)→f(∞)であるのでこれがどうなるかがわからないと極限がわかりません.おそらくh→0の間違いではないかと思います.そうであるとして回答します. 2h=kとおくと {f(a+2h)-f(a)}/h={f(a+k)-f(a)}/(k/2) =2{f(a+k)-f(a)}/k h→0⇔k→0であるから極限値は lim_{k→0}2{f(a+k)-f(a)}/k =2lim_{k→0}{f(a+k)-f(a)}/k =2f'(a) 2.x-a=hとおくと, {x^2f(a)-a^2f(x)}/(x-a) ={(a+h)^2f(a)-a^2f(a+h)}/h ={(a^2+2ah+h^2)f(a)-a^2f(a+h)}/h ={-a^2{f(a+h)-f(a)}+h(2af(a)+hf(a))}/h =-a^2{f(a+h)-f(a)}/h+2af(a)+hf(a) x→a⇔h→0であるから極限値は lim_{h→0}[-a^2{f(a+h)-f(a)}/h+2af(a)+hf(a)] =-a^2f'(a)+2af(a)

関連するQ&A

  • 不定形の極限値

    不定形の極限値の範囲で下の2つの定理の証明がわからなくて困っています。 どなたか解説をお願いします。 定理1 f(x),g(x)はある開区間(a,∞)で微分可能な関数とする。 もし、lim(x→∞)f(x)=lim(x→∞)g(x)=0が成立し、 極限 lim(x→∞) f'(x)/g'(x) = L が存在すれば lim(x→∞) f(x)/g(x) = L が成り立つ。 定理2 f(x),g(x)はaを含むある開区間で微分可能な関数とする。 もし、lim(x→a)f(x)=lim(x→a)g(x)=∞が成立し、 極限 lim(x→a) f'(x)/g'(x) = L が存在すれば lim(x→a) f(x)/g(x) = L が成り立つ。   

  • 微分 可能 について 

    微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか?

  • 極限値を求める問題です

    よろしくお願いします。 以下の問題を解いていたのですが、いまいち自信がありません。 また、(3)の問題の解き方がどうしてもわかりません。 わかる方、ご指導のほど、よろしくお願いします。 【問題】 ()内の関数の定積分と関連されることにより、次の極限値を求めよ、 (1) lim[n→∞] {(1/(n+1) + 1/(n+2) + … + 1/(n+n)} これを適用する→(1/1+x) 自分の答え =lim[n→∞] (1/n){(1/(1+1/n) + 1/(1+2/n) + … + 1/(1+n/n)} f(x)=1/(1+x), 1/n=hとおくと、 lim [n→0] h(f(h)+f(2h)+…+f(nh)) ∫[0→1] 1/(1+x) dx = [log(x+1)](0→1) =log(2)-log(1)=log(2/1)=log(2) (2) lim[n→∞] {(n/n^2 + n/(n^2+1^2)+…+n/(n^2+(n-1)^2)} これを適用する→(1/(1+x^2)) 自分の答え 各項を、n/(n^2+k^2)=1/(1+(k/n)^2)*1/n (k=0,1,…,(n-1))と表す。 次に、n→∞の極限に移行して、 lim [n→∞] Σ 1/(1+(k/n)^2)*1/n =∫[0→1] 1/(1+x^2) dx = [arctan(x)](0→1) =[arctan(1)]-[arctan(0)]=π/4-0=π/4 (3) lim[n→∞] 1/(n^(a+1)) Σ[k=1→n] k^a これを適用する→(x^a (a>0)) 自分の答え ??? 以上、ご指導のほど、よろしくお願いします。

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 微分の問題

    数学の問題がわかりません。 だれかアドバイスお願いします。 問1 次の極限値を求めよ。    (1) lim[x→π/2](1-(sinx)^3)/(1-sinx) 問2 次の片側極限値を求めよ。  (2) lim[x→-0]x/|x| (3) lim[x→-1+0]x/(x+1) 問3 次の極限値を求めよ  (4) lim[h→0](1-e^(ah))/(h+ah^2) (a≠0) (5) lim[x→0]e^x-e^(-x)/x 問4 (6) 3次方程式 f(x)=x^3+ax^2+bx+c=0は少なくとも1つの実数解をもつことを証明せよ。 問5 次の関数はx=0で微分可能であるか?    (7) f(x)=|x(x-2)| (8) f(x)=|x^3| 問6 次の関数のx=1における微分係数を定義に従って求めよ。    (9) y=x^2+2 問7 次の導関数を定義に従って求めよ。    (10) y=x^2+2 わかる範囲での自分の考え  (1) x-π/2=tとおいてこの問いを解く  (9)と(10) f'=(f(x+h)-f(x))/hの方法で解く。この2題は考え方が同じになってしまうのですが、これでいいのでしょか? あとは、よくわかりません。 わかる方、教えてください。 お願いいたします。  

  • 微分・極限値

    計算について質問です よろしくお願いします /は普通の分数 /は普通の分数の下にまた分子がくるという意味です 1. 次の関数f(x)を定義によって微分しなさい。 f(x)=1/x f´(x)=lim h →0 f(x+h)-f(x) =lim h →0 1/x+h-1/x /h =lim h →0 1/h{x-(x+h)/x(x+h)} =lim h →0 -1/x(x+h) =-1/xの二乗 このlim h →0 1/x+h-1/x /hのとき なぜlim h →0 1/x+hではなく、hもxと一緒になって分子に移動しているのかがわかりません。 その計算方法を教えてください よろしくおねがいします。

  • 極限って

    極限とは何のためにあるのでしょうか?例えば lim(x→a)f(x) です。よろしくお願いします。

  • logの極限値

    lim[h→0](1+h)^1/h=eを利用して次の極限値を求めよ lim[h→0](1+h)^x/h lim[x→∞](1+(1/x))^-x これがテストに出るみたいですがこういうのってどうやればいいんですか?

  • 極限計算について

    極限の計算において x→aのときにf(x)→A, g(x)→Bであるとする。 このとき f(x)g(x)→AB が成り立つ。 とあったのですが、そうだとしたら次の計算は成り立ちますか? lim[n→∞]1/(2n)×1/nΣ[上:n 下:k=1]{f(k/n)}^2 lim[n→∞]1/(2n)×∫(0→1){f(x)}^2dx=0 まず2段目の式についてはΣの方だけ区分求積しておいて1/(2n)だけ極限を計算していないのですが、こういう書き方はしてもよいのでしょうか?かといって 1/∞×∫(0→1){f(x)}^2dx=0 として∞なんかを計算式に書くのもダメですよね? まあこれは書き方の問題に過ぎないのですが... そこで極限においてですが、「和」も「差」も「積」も一つずつ別々に計算してそれを最後に足したり引いたりかけたりしてよいのでしょうか?例えば h(x)+I(x)+j(x)→α+β+γ(α,β,γはそれぞれの極限値とします) というのは成り立ちますか?もちろん足したり引いたりかけたりする項がn個の場合は成り立たないと思いますが。 あと上で書いたA,Bという極限値ですが有限値という制限がありました。当たり前だと思うのですが→0ももちろん有限値ですよね? 参考書に書いてあるようなレベルの質問ですが、ちょっと自分としては曖昧な点があるので一度アドバイス頂いた方が良いと思い質問させていただきました。よろしくお願いします!

  • 数列・関数の極限について

    俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか?   数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか?   数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。