• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:右優集合)

右優集合とは?微分方程式論の現代数学講座11から学ぶ

このQ&Aのポイント
  • 右優集合とは、微分方程式(2.5)に対して、n+1 次元の集合Dに含まれる集合Eがあり、Eの点から右(または左)へ出る解曲線がDに含まれる限り、それがEにも含まれることを指します。
  • 具体的な例として、微分方程式 dy/dx=0 のもとで、集合A={(x、y)|x<=0、y=4}、B={(x、y)|x=0、y=3}、C={(x、y)|x>=0、y=2}、F={(x、y)|x>=0、y=1} が与えられ、D=A∪B∪C∪F の場合、Eはどんな集合となるでしょうか?
  • 上記の例において、EはC∪F だけでなく、A、B、D、C の任意の和集合としても考えることができます。つまり、Eは右優集合になります。右優集合とは、集合D内の解曲線が含まれる集合Eのことを指し、左優集合も同様に定義されます。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.5

E は、要するに、 D の点で、その点から右へ出る解曲線が D に含まれるような点は全て含み、 そうでない点は含んでも含まなくてもよい…という条件を満たす集合 なのかな?

uyama33
質問者

お礼

いろいろヒントをいただきありがとうございます。 この第2章は、3章以下では使われないようですので、 疑問点のしるしだけつけて、先に進んでみます。 読み終わってから、もう一度繰り返して読んでみることにします。 ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (4)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

そうでもないです。 E = C ∪ F ∪ G ただし G = { (x,y) | -20≦x≦-10, y=4 } とかでも、問題ないように思います。 この例の E は、D の点で G の右にあるものを全て含んではいません。

全文を見る
すると、全ての回答が全文表示されます。
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.3

どうも「右へ出る解曲線」の定義ガハッキリしなくて、 微分方程式の式形によっては解釈困難になりそうな予感 もするのだけれど、dy/dx=0 の場合に限っては 点 (a,b) から右へ出る解曲線は、{ (x,y) | x≧a, y=b } ←[*] で良いような気はします。 そうだとして、 それが D に含まれるならば必ず E にも含まれているような D の部分集合 E はといえば… [*] の形の解曲線でが D に含まれるのは、C または F に 含まれる場合です。それが必ず E に含まれるのですから、 E は C および F を全て含んでいなければなりません。 また、そのとき、E は解曲線を含みます。 よって、D の部分集合 E が dy/dx=0 の「右優集合」 になるのは、E⊇C∪F の場合でしょう。 質問文中の「A, B, D, C の任意の和集合」というのは、 おそらく、A, B, C, F の任意の和集合 の書き違いでしょうが、 E は C, F を全て含まねばならないし、A, B については A, B まるごとでなくても、その任意の部分集合を含むことが できそうです。

uyama33
質問者

補足

EのA点があったら、 Dの点でAの右にあるものを、すべて集めればよいのでしょうか。

全文を見る
すると、全ての回答が全文表示されます。
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

「右へ出る解曲線」の右端はどうなってる? そこの規約によって答えは異なると思う。

uyama33
質問者

補足

解曲線の右端の規定は見つかりません。

全文を見る
すると、全ての回答が全文表示されます。
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

Eの点から「右へ出る」解曲線 …て、何や?

uyama33
質問者

補足

y=φ(x)なる解が初期条件y(a)=bを満足しているならば、解曲線y=φ(x)は点(a,b)を通ることになる。 もし、aがφ(x)の定義されている区間の左(または右)の端である場合には、y=φ(x)は、点(a,b)から右(または左)に出る解曲線とよばれる。 のだそうです。 p43 より。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数学A 集合

    今高1ですが、大学進学を考えているので 大学の入試問題を解いています。 解答を見てもわからない問題があるので、教えて下さい! 分からないところは f(g(x))とg(f(x)) がどういう意味なのかです。 問題は、 2つの関数f(x)=-x+3,g(x)=x^2+5 を考える。 -50以上50以下の整数の集合 A={-50,-49,・・・,-1,0,1,・・・,50} に対し、2つの集合BとCを B={f(x)|x∈A}, C={g(x)|x∈A} により定める。集合Mの要素の個数をn(M)で表す。 D{f(g(x))|x∈A}, E={g(f(x))|x∈A} によって集合D,Eを定めるとき、n(D), n(E)を求めよ。 という問題です。 解答は 集合Dは、 D={f(g(x))|x∈A}={f(x)|x∈C} と考えられるが、xが異なればf(x)の値は異なるから、 n(D)=n(C)=51 集合Eは、 E={g(f(x))|x∈A}={g(x)|x∈B} 集合Bは-47以上53以下の整数の集合で、絶対値の異なる整数は54個ある。よって、 n(E)=54 です。 2003年の近畿大学・理工学部の改題らしいです。 長くなってすみません<(_ _)> おねがいします。

  • 一階微分方程式

    y=f(x) 下記の微分方程式は解けますか?(プログラム以外) dy/dx=a*y^4+b*y^3+c*y^2+d*y+e(a,b,c,d,e常数) もし出来れば、そのプロセスを教えていただけませんか

  • ボレル集合族って何ですか???

    ボレル集合族を、イマイチ上手く捉えられません。 頭の悪い自分なりに考えたのですが、 自分の解釈が正しいのか全く分かりません。 指摘お願いします。 ちなみに自分なりの解釈↓ 全体集合Ω={ω1、ω2、・・・・・}  Ωの元の個数はM個 Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・}    Fの元の個数は2^M個で、FはΩのσ加法族 A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。 このBが、ボレル集合族で、ボレル集合族の元をボレル集合という。 つまり↓ Ω={ω1、ω2、・・・・・} F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} A⊂F A={・・・・・・・} B={A、・・・・・・・・・・}         BはAのσ加法族 C={A、B、・・・・・・・・・・}       CはBのσ加法族 D={A、B、C、・・・・・・・・・・}     DはCのσ加法族 E={A、B、C、D、・・・・・・・・・・}   EはDのσ加法族 ・ ・ ・ A∊B∊C∊D∊E・・・で、 B、C、D、E・・・はAを含むσ加法族で、 B、C、D、E・・・のうち最小なものはBなので、BはAのボレル集合族である。 ってことですかね??? よく分からないのは、ボレル集合族の条件に、Ω∊B とありますが、 私の解釈だと、Ω∊B となっていません。 ???って感じです。 ちなみに私の解釈だと、全ての集合には、そのボレル集合族が存在します。 で、ある集合がボレル集合族ということは、その集合の元を集合とする集合があるってことです・・・? 頭が悪いので、むちゃくちゃ簡単に教えてもらわないと理解出来ません。 図書館で確率論の教科書を色々呼んだんですが、難しく書かれてあって、???です。 助けて下さい。

  • 集合に関する問題が分からなくて困っています

    僕は集合とかの問題が苦手なため、担当教官にいくつか基礎問題を出してもらって考えていたんですが・・・ 教官が答えをくれないので正しい答え(考え方を含む)がよく分からないんです。 問題数も多いんで重要だと指摘された4問を教えていただけるとうれしいです。 1つでもいいんでどうかよろしくお願いします。 1.任意の有限集合A、Bに対して、  集合A~B⇔AからBへの全単射が存在するとする。   このとき~は同値関係である事を示せ。  (記号~の意味はAからBへの全単射が存在するという定義らしいです。) 2. 集合A,Bに対して  A≦B⇔A⊆B   とする。  (1)≦は順序関係である事を示せ。  (2)inf{x、y}=x∩yとなることを示せ。 3. (1) 集合x、yに対して、  {{x}∪{y}}-{{y}}   どんな集合か。 問題1に関してはノートなどを見て書いてみたんですが、 反射:f(a)=a 対称:f(a)=bとするとf^-1(b)=a 推移:f(a)=b、f(b)=cとするとf(f(a))=c 教官には違うと指摘されただけで終わりました。何が違うんでしょうか? ちなみにf^-1はfの逆行列という意味です。

  • 微分方程式に関する問題です。

     dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 途中の計算などもできれば詳しくお願いします。

  • 剰余集合について

    R を実数体, t を 0 に等しくない実数とします。 このとき、多項式環 R[x, y] から3つのイデアル, A = (x^2, y^2), B = (x, y), C = (x + ty), を選びます。 剰余環 R[x, y]/A を考えるとき, A ⊆ B なので B/A は R[x, y]/A のイデアルになります。 それに対して, A ⊆ C は成り立たないため、これまで C/A というものを考えたことがありませんでした。 そこで質問なのですが, C/A を集合と見なすことは可能なのでしょうか。 無理矢理 C/A を集合と考えて調べてみると、次の 1 と 2 が成り立つことがわかりました。 1. C/A は R[x, y]/A のイデアルにならない 2. C/A は R[x, y]/A の部分集合にすらならない しかし、それだけではどうもすっきりしません。 今回の C/A のように, A ⊆ C が成り立たない場合でも, C/A を剰余集合と呼ぶのでしょうか。 f, g ∈ C に対して, f ~ g を f - g ∈ A と定義すれば、関係 ~ が同値関係になるのは理解できます。 しかし, 4Z/6Z などと同じく数学専門書で見た記憶がないため, C/A という表記そのものに対する違和感が消えません。 考えすぎなのかもしれませんが、どうしても気になるのでアドバイスをお願いできませんでしょうか。 集合論や抽象代数学の専門書で調べてみたのですが、疑問は解決しませんでした。

  • 集合の問題!

    集合の基礎的な問題です。 わからなくてかなり困っています! 明日テストがあるので、これらの問題をどうしても理解したいです。 自分で解いてみたのですが、以下のことくらいしかわかりませんでした。 たぶん証明を見れば理解できると思うので、至急回答お願いしたいです。 よろしくお願いします!!>< <問題> 問1:FがΩの集合体であるとき、次を示せ。 (1)Ω∈F (2)A,B∈Fならが、A⊂B,A\B,AΔB∈F (3)A1,A2,…,An∈Fならば、∪(i=1,n)Ai,∩(i=1,n)Ai∈F 問2:集合X,Yの濃度が同じである、すなわちX~Yは同値関係であることを示せ。 問3:ベルンシュタインの定理を用いて、次を示せ。 (1){x|0<x≦1}~{x|0≦x≦1} (2){(x,y)|0<x≦1,0<y≦1}~{x|0≦x≦1,0≦y≦1} (3)a<bであるとき、[a,b]~R^2 (4)a<bであるとき、[a,b]~D 但し、D⊂R^2でDは少なくとも1つの内点をもつ。 問4:Fをσ集合体とするとき、以下を示せ。 A1,A2,…,An,…∈F ⇒ ∪(i=1,∞)Ai∈Fとするとき    (i)∩(i=1,∞)Ai∈F    (ii)lim(n→∞)supAn∈F ※問4は記述がわかりづらいですが、A1から始まる無限大の和集合がFに含まれる、(i)はA1から始まる無限大の積集合である、という意味です。(ii)はn→∞がlimの下にくれば正しい記述になります。問1の(3)の記述も同じくです。 <考えたもの> 問2:X~Yということから濃度の定義より、XとYの間には全単射がX→Yが存在する。その上で、反射律・対称律・推移率を示せばよい。 という考えまでは至ったんですが、やってみようとしてもここからの証明の仕方というか記述の仕方がわかりません… 問4:(ii)は、lim(n→∞)supAn∈F=∩(i=1,∞)(∪(i=1,∞)Ai):上極限集合 なので、これがFに含まれることを証明すればいいんだろうとは思うのですが記述の仕方がいまいちわかりません。(i)もどのように記述していけばよいのでしょうか? 問1、問3は証明の見通しが立ちません…。 特にこの2つがわからないです。

  • 集合と写像

    集合と写像に関する証明で,そうなるということはわかっているのですが,どのように証明すれば良いかわかりません。 問題は 集合Xから集合Yへの写像f:X→Yによる像に関して,以下を示せ。 (1) 任意の部分集合A,B⊂Xに対して,f(A∩B)⊂f(A)∩f(B) (2) fが単射であるならば,任意の部分集合A,B⊂Xに対して,   f(A∩B)=f(A)∩f(B)が成り立つ (3) Xの任意の部分集合A,B⊂Xに対して,f(A∩B)=f(A)∩f(B)が成り立つならば   fは単射である。 どなたか解説お願いします。

  • 微分方程式の一般解を求めたいです。

    dy/dx = (a+by)(c(x)+d(x)y) ここで、a,bは定数、c(x),d(x)はxの区間Iで連続とする。 (1)この微分方程式は、変数変換y = 1/b(1/z - a)により次の線形微分方程式に変換されるという。 dz/dx = f(x)z + g(x) をf(x),g(x)をa,b,c(x),d(x)を用いて表せ。 ********************************************* これはf(x) = ad(x) - bc(x) g(x) = -d(x) として答えがでました。 ********************************************* (2)a = b = 1,c(x) = x + 2/x , d(x) = xとするとき、微分方程式の一般解を求めよ。 dz/dx = -2z/x -x という式になると思うんですけど一般解をどう導き出していいのか分かりません。よろしくお願いします。

  • 集合の問題

    集合Aから集合Bへの写像f:A→Bが与えられているとする。 Aの2元a,bについてf(a)=f(b)のときa~bと定義すれば、 関係~が同値関係であることを示せ。 さらにfが全射であれば同値類集合A/~と集合Bは対等であることを示せ。 前半はいいのですが後半がいまいちわかりません。 以下のように示したのですがどうでしょうか? X/~={[x]|x∈X},[x]={y∈X|x~y即ちf(x)=f(y)} これよりg:A/~→B:g([x])=f(x)が全単射かつwell-definedであることを示す。 (well-defined) [x]=[x']とする。この時∀y∈Xについて y∈[x]とすればf(y)=f(x)=f(x')となるのでg([x])=g([x']) よってgはwell-defined (全射) ∀y∈Bとするとfが全射であるから∃x∈A s.t. f(x)=y これよりx∈[x]だから∃[x]∈A/~となるのでgも全射となる。 (単射) g([x])=g([y])⇒f(x)=f(y)とするとx∈[x]⇒x∈[y]がいえる。 其の逆も言えるので[x]=[y]