• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:|A→×B→|=|A→B→|sinθの証明問題)

|A→×B→|=|A→||B→|sinθの証明問題

このQ&Aのポイント
  • |A→×B→|=|A→||B→|sinθの証明問題について解説します。
  • 質問文では、ベクトルAとベクトルBの外積の大きさが、ベクトルAの大きさとベクトルBの大きさの積に、なす角θの正弦をかけた値に等しいことを証明する問題です。
  • 具体的な手順としては、まずベクトルAとベクトルBの定義を示し、それぞれのベクトルの成分を具体的に表します。次に、ベクトルAとベクトルBの外積を計算し、その結果が正しい方向を持つことを示します。さらに、ベクトルAとベクトルBを結んでできる三角形の面積を計算し、その結果が求める式に一致することを示します。最後に、この結果を用いて外積の大きさを計算し、求める式が成り立つことを示します。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

まず、教科書を開いて A→×B→ の定義を確認しよう。 流儀によっては、A→×B→ ⊥ A→, A→×B→ ⊥ B→, |A→×B→| = |A→||B→|sinθ を A→×B→ の定義に している場合だってある。定義を確認しない事には、 証明が始まらない。

ligase
質問者

お礼

ありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

ちょっとくらい自分で考えようとは, ゆめにも思わないのかなぁ?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数学Bの問題(外積を使わずに)

    以下の問題について、教えてください。 P=(12,4,3)に垂直な空間ベクトルA,B があり、△OABの面積をSとするとき、 △OABをxy平面に射影した△OA'B'の面積S'を Sを用いて表しなさい。 なお、ベクトルPがx,y,z軸の正の方向と成す角の大きさを α,β,γとします。 この問題の答えは、 S'=S*cosγ だと思いますが、 これを外積を利用せずに解くことはできますか? 12a1+4a2+3a3=0 12b1+4b2+3b3=0 などを利用する?? ************************************************************** 以下、計算のために、位置ベクトルとしての成分を整理しておきます。 P=(12,4,3) N=P/|P|=(cosα,cosβ,cosγ) : 平面OABの法線単位ベクトル A=(a1,a2,a3) B=(b1,b2,b3) A'=(a1,a2,0) B'=(b1,b2,0) ************************************************************** 外積を使えば、 A×B = (a2b3-a3b2,a3b1-a1b3,a1b2-a2b1) = |A×B|*N = |A×B|*(cosα,cosβ,cosγ) より、a1b2-a2b1=|A×B|*cosγ よって、 S'=1/2*|A'×B'| =1/2*|(0,0,a1b2-a2b1)| =1/2*|(0,0,|A×B|*cosγ)| =1/2*|A×B|*cosγ =S*cosγ と計算できます。(cosγ=3/13です) しかし、以上のように外積の性質を利用した解法は、 わざわざベクトルPが成分表示されている意味がありません。 **************************************************************

  • 三角形の面積の射影と方向余弦について

    3次元空間内に△OABがあり、その面積をSとします。 △OABがつくる平面の法線単位ベクトルをn=(cosα、cosβ、cosγ)とするとき、 △OABをx-y平面に射影してできた△OA'B'の面積S'は  S'=S |cosγ| となる・・・らしいのですが、その理由がわからずにいます。 n=(cosα,cosβ,cosγ) a=(a1,a2,a3) b=(b1,b2,b3) a'=(a1,a2,0) :ベクトルaをx-y平面に射影したベクトル b'=(b1,b2,0) :ベクトルbをx-y平面に射影したベクトル とすると、外積の利用により S=1/2×|(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)| S'=1/2×|(0,0,a1b2-a2b1)| などがわかります。 そこから、どうやって S'=S |cosγ| に辿りつけるでしょうか?

  • 応用解析IIIの問題です。

    (1) a,b,cを正の定数として、平面x/a+y/b+z/c=1が各座標軸と交わる点を頂点とする三角形をSとする。 この時、α、β、γを正の定数とする関数φ=αx+βy+γzのS上における面積分を計算せよ。 (2) 原点(0,0,0)を中心とし、(x,y,0)平面上の半径aの円を低面積として高さhの円柱の側面積をSとする。この時、ベクトル場〈A(r)|=(2x,y,3z)のS上における面積分を計算せよ。 よろしくおねがいします。

  • ベクトルに関する線積分などの問題です

    ベクトル場A=x^3i+y^3j+z^3k、B=x^2i-z^2j+y^2kがある。 (i,j,kは、x,y,z方向の正の向きの単位ベクトルになります。) (1)線積分∫A・drを求めよ。経路は、(0,0,0)→(1,0,0)→(1,1,0)→(1,1,2)とする。 (2)ベクトル場Bの回転rotBを求めよ。 (3)次の面積分∫rotB・dSを求めよ。ただし、曲面Sは、xy平面上のz>=0にあって、原点を中心とする半径1の半円で囲まれた領域、S={(x,y,z)|x=0,z>=0,y^2+x^2<=1}とする。また、x>0を曲面Sの正の方向とする。 詳しい回答よろしくお願い致します。 (3)に関しては、ストークスの定理を使って線積分に直した方がいいのでしょうか?

  • 2(A-B)-3(B+2C)を計算せよ。

    A=3x^2+2xy-5y^2 B=x^2-3xy-4y^2 C=3y^2+4xy のとき 2(A-B)-3(B+2C)を計算せよ。 …という問題なんですが 以下の解き方は間違っていますよね? 答えをみると違うので、間違っているのは分かるんですが 何が間違っているか分かりません。 指摘・解説いただけますと助かります。 まず 2(A-B)を計算 2(3x^2+2xy-5y^2-x^2-3xy-4y^2) =6x^2+4xy-10y^2-2x^2-6xy-8y^2 =4x^2-18y^2-2xy 次に -3(B+2C)を計算 -3{(x^2-3xy-4y^2)+2(3y^2+4xy)} =-3(x^2-3xy-4y^2+6y^2+8xy) =-3x^2+9xy+12y^2-18y^2-24xy =-3x^2-6y^2-15xy 最後に合わせて 4x^2-18y^2-2xy-3x^2-6y^2-15xy =x^2-24y^2-17xy 答え x^2-24y^2-17xy よろしくお願いします。

  • ガウスの定理を用いて解く問題です。

    この問題の解の導き方をどなたかわかりやすく教えてください。 この問題は結局何を求めているのでしょうか?球面の表面上における値というのは表面積のことを訊いているのでしょうか。途中計算までしかできませんでした。 ベクトル場A=(y-z+2x)(i)+(xy+4)(j)-xz(k) において、 球面S : x^2+y^2+z^2=4 の表面上における以下の値を求めよ。 ∫(s) A・dS *(i),(j),(k)は単位ベクトルです。 ガウスの定理より ∫(s) A・dS=∫(s) A・nds=∫(v) divA・dv *AとSはベクトルを表しています divA=∂Ax/∂x+∂Ay/∂y+∂Az/∂z =∂(y-z+2x)/∂x+∂(xy+4)/∂y+∂(-xz)/∂z =(y-z+2)+(x+4)+(-x) の形になると思うのですが、このあとの計算方法がわかりません。

  • ベクトル場Aと閉曲線Cが次のように与えられた時、閉

    ベクトル場Aと閉曲線Cが次のように与えられた時、閉曲線Cに沿うベクトル場Aの線積分を、直接計算によって、ストークスの定理を利用してそれぞれ求めよ。 A=(x^2+y-4)i+3xy^2j+(2xz+z^2)k Cは曲面z=4-x^2-y^2とxy平面との交わりで、向きは反時計回りとする。 2通りのやり方で教えてください!

  • ベクトル場の面積分の問題です。

    3次元のベクトル場(i,j,k) である、A=i+j , B=yi+xj それぞれについて、 (1)yz平面上の単位円についての面積分を求めよ。ただし、単位法線ベクトルの向きはx方向とする。 (2)原点中心の半径1の球の表面についての面積分を求めよ。 という問題なのですが、 積分する面をパラメータ表示してやってみたところ、 (1)(x,y,z)=(0,cosθ,sinθ) (0≦θ≦2π) N=(1,0,0) (ベクトルを大文字で表しました;) A・N=(1,1,0)・(1,0,0)=(1,0,0) B・N=(y,x,0)・(1,0,0)=(y,0,0) ∮A・NdS の dsの部分の求め方がいまいちわかりません; (2)では (x,y,z)=(sinθcosφ,sinθsinφ,cosθ) (0≦θ≦π,0≦φ≦2π) ds=|(cosθcosφ,cosθsinφ,-sinθ)×(-sinθsinφ,sinθcosφ,0)| dθdφ =sinθ dθdφ N=(x/2,y/2,z/2) A・N=x/2=(1/2)・sinθcosφ ∮A・NdS=(1/2)・∬(sinθ)^2・cosφ dθdφ =(π/4)・∫cosφ dφ =0? B・N=xy=(1/2)・(sinθ)^2・sin2φ ∮B・NdS=(1/2)・∬(sinθ)^3・sin2φ dθdφ =(4/3)・∫sin2φ dφ =0? となったのですがどこが間違っているかわかりません; どうか教えてくださいm(__)m

  • 面積の問題

    S={(x,y)│a≦x≦b, c≦y≦d} P={(x,y,z)│Ax+By+Cz+D=0, c≠0} T={(x,y,z)│(x,y)∈S, z=(-A/C)*x+(-B/C)*y+(-D/C)} Tはxy平面への射影がSとなるP上の平行四辺形。 Sの面積とTの面積比をA、B、C、Dで表すという問題の解法がわかりません。 面積比だから答えはA:Bのような形になるんでしょうか? お願いします。

  • a) 点A(1,0,-4)を通り、ベクトルa=(-1,4,2)とb=(

    a) 点A(1,0,-4)を通り、ベクトルa=(-1,4,2)とb=(2,-1,3)を含む平面の方程式を求めよ b)球面S:x^2+y^2+z^2-8x+6y+24z=0上の点(0,0,0)におけるSの接平面の方程式を求めよ ↑の二問が解けません>< 解説よろしくお願いします

このQ&Aのポイント
  • LeMIEUX7000は長年故障状態で使っていたミシンで、様々な機能を利用することができました。
  • しかし、取り扱い説明書が見つからず、使い方を忘れてしまいました。
  • 探しても説明書が見つからず、ミシンの機能が制限されている状況で困っています。
回答を見る