• ベストアンサー

複素数の積分

(2t+i)cos(t^2+it) の積分のし方がわかりません。 微分のときと同様に 虚部と実部のわけかたと、公式を使った解き方の解説できるかた、おねがいします。

  • tess
  • お礼率29% (207/694)

質問者が選んだベストアンサー

  • ベストアンサー
  • KENZOU
  • ベストアンサー率54% (241/444)
回答No.1

積分範囲等が不明なのでヒントだけ。 z=t^2+it と置くと dz=(2t+i)dt ∫(2t+i)cos(t^2+it)dt=∫cos(z)dz=sin(z) のようになりますね。  

関連するQ&A

  • 複素数

    √3e^iπ/3 の実部と虚部 (-i)^2/3の実部と虚部 教えてくださいお願いします

  • 複素解析

    logsin(it)の微分の方法がわかりません。 実部と虚部に分けて微分したいのですが、どのようにわけるのでしょうか? それから 公式を使って解く方法があるらしいのですが、そちらの解き方もわかりません。 おねがいします。

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • z=rexp(iθ) 実部と虚部

    z=rexp(iθ) , |r|<1とする (1)1/(1-z)=1+z+z^2+....の実部と虚部を比べてcos,sisについての公式を出せ (2){1-z^(n+1)}/(1-z)=1+z+.....+z^nの実部と虚部を比べてcos,sisについての公式を出せ お願いします...(>_<)

  • 複素数

    i^iを実部と虚部はどのように表されるのでしょうか? 変形してみたもののうまくいかないもので・・・・ わかる方おられましたらよろしくお願いします。

  • 複素数の絶対値の二乗

    E = A exp i(ωt - φ1) + B exp i(ωt - φ2) ・・・ <複素振幅の式です> の絶対値| E | をとって2乗するとき, どのようにすればよいですか? 答えは| E |^2 =√( A^2 + B^2 + 2AB cos(φ1 - φ2))になります cosとsinの式に直し, 実部と虚部に分けて|x + i y |^2 = (√(x^2 + y^2))^2 の 関係を使ったのですが, なぜこのような解になるかがわかりません

  • 複素数の問題についての質問です

    複素数の問題についての質問です 次の問題の実部、虚部を答える問題(1)の確認、修正(2)の 考え方についての回答をお願いします。 (1) log(2i) (2) (1/√2 + i/√2)^15 (1)log(2i) = a + biとする e^(2i) = cos2 + isin2 a = cos2 , b = sin2

  • 複素数平面上での解について

    解の公式を使うと、解は4i,-i となりました。元の式に代入してみると0となり、こちらが答えのようです。 しかし、なぜ写真のやり方が間違っているのかがわかりません。実部と虚部が共に0になることから解を求めたのですが、どこが間違っているのでしょうか?どなたかご教授頂ければ幸いです。

  • 実数でもできる複素数積分

    (1+sinθ)/(5+4cosθ)を0から2πまで積分しなさいという問題なんですが、実数で積分するのは難しいのでこれを複素数を使って積分します。 留点がz=-1/2となってRes(-1/2)を求めてそれに2πiをかけて積分をしたんですが答えがπ(4/3-i)になりました。答えにiが出てきてしまいました。これは明らかに間違ってますよね?(1+sinθ)/(5+4cosθ)の積分は実数で表されるはずなんですが、どうしても計算がうまくいきません。 よろしくお願いいたします。

  • 平面ベクトルと複素数の関係について

    複素数の実部と虚部を平面上の(x,y)と対応づける事をよくしますよね? これには、どのような利点があるのでしょうか? ※複数あると思うので、具体例を列挙していただけると助かります。 また、ベクトルの成分同士(平面ベクトルで言えばxとy)は 次元が違いますからxとyが干渉し合う事はありません。 (yはどこまでいってもどこまで) でも複素数の実部と虚部には i*i = -1 という実部と虚部を繋ぐ関係式があるので 実部と虚部は完全に独立した存在ではないと思うのです。 (もちろん積さえ考えなければ、実部と虚部は独立しているというのは理解できます。。) よって、ベクトルと複素数は似て非なるものではないかとおもうのですが。。 それに関連して、あるサイト上で以下のような記述を発見しました。 「 まずはa→=(1,3),b→=(2,2)のように,ベクトルを成分で表します。これを複素数だと思って, a=1+3i,b=2+2i と読み替えてください。この2つの複素数の掛け算は,   (1+3i)(2+2i)=2+2i+6i-6=-4+8i となります。これを再びベクトルとして読み替えると(-4,8)となりますが・・・ 実はこれがベクトルの積の計算方法なのです。   a→×b→=(1,3)×(2,2)=(-4,8) というのが正解です。 」 たとえば、i*i= -2 という風に定義していたとしたらこの計算結果は変わってきますよね? なのでこのように複素数とベクトルを同一視するのはおかしいと思うのですが。。 ベクトルと複素数に関して、理解を深めたいので解説してください。 お願いします!