• ベストアンサー

2つの位相が一致することの証明

こんにちは。位相についての質問です。 二次元ユークリッド空間上の単位円周  S = { (x,y) ∈ E^2 | x^2 + y^2 = 1 } を考え、 S上の二点 p , q に対し、   d(p,q) = op と oq のなす角度 ∈ [0 , π]  (op , oq はそれぞれ原点と p , q を結ぶ線分) として、S上の距離を定めます。  このとき、ユークリッド空間からSに定まる相対位相 U と、距離dから定まる位相 Ud が一致することを示せ、というのが問題です。 まず、Ud⊂ U を示そうと思い、任意にA∈Udを取りました。 A∈Uを言うためには、あるユークリッド空間の開集合Bが存在して 「A = B ∩ S」 となっていることを言えばいいのですが、そのBの作り方がいまいち分かりません。 逆に U⊂ Ud を示そうと思いましたが、こちらもBの形がよく分からず示すことができませんでした。 イメージとしては同じようなものになることは分かるのですが... うまく言葉にできず困っています。 分かる方がいましたら回答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • metzner
  • ベストアンサー率60% (69/114)
回答No.1

こんにちは。 まず一般的な話として、距離空間から定まる位相の開集合Oの定義は、 全てのx∈Oに対して、あるe>0 が存在して、N_e(x)⊂O ですから、 U_x∈O N_e(x)⊂O が成立します。ここでN_e(x)はxのe-近傍 N_e(x)={ y | d(x,y)<e } です。 また x∈N_e(x)ですから、明らかに O⊂U_x∈O N_e(x) です、よって O = U_x∈O N_e(x) すなわち距離空間から定義される位相の開集合はe-近傍の和集合で書けます。 だから近傍について考えればよいです。 角度による距離空間のxのe-近傍をN1_e(x) と書くことにしましょう。 すると図形的考察より、 N1_e(x) = N2_a(x)∩ S a = 2sin(e/2) であることが分かります。ここでN2_a(x)は2次元ユークリッド空間の距離から定まるxの a-近傍です。 これを使えば、証明されたいことは容易に分かりますから、ご自身で仕上げてください。

tumftmk
質問者

お礼

なるほど、 距離空間から定義される位相の開集合はe-近傍の和集合で書ける という事がポイントだったのですね。 私は、e-近傍だけなら図で考えて証明できたのですが、 一般的に「開集合⇒ e-近傍」は言えないのでその辺りで分からなくなっていました。 回答どうもありがとうございました。

関連するQ&A

  • 位相

    X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。

  • 位相の問題です。

    位相の問題です。 (X,Q)、(X,Q'):位相空間 X×Y={(x,y)|x∈X,y∈Y} Qx×y:=U×V{U∈Q,V∈Q'の形の任意個のX×Yの部分集合の和集合} ここで (X×Y,Qx×y):位相空間になることを示せ。 わかる方いましたらよろしくお願いいたします <(_ _)>

  • 商位相空間

    X=R^n+1-(0,0,…,0)のおいて(x0,…,xn)~(λx0,…,λxn)(λ≠0)により 関係~をX上に定義する。 (a)~が同値関係になることを示せ。 (b)商位相空間X/~をRP^nと表し、n次元実射影空間という。 RP^nがハウスドルフ空間であることを示せ。 (a)に関しては問題が曖昧な気がするのですが…。 これは (x0,…,xn)~(y0,…,yn)⇔∃λ≠0 s.t.(y0,…,yn)=(λx0,…,λxn) ということでいいのですか? (b)ですがハウスドルフ空間の定義は X上の任意の異なる二点x,y∈Xに対して二つの開集合U,Vで x∈U、y∈VかつU∩V=φとなるものが存在する。 ということですよね。 商位相空間X/~はどのような位相空間になるのでしょうか?

  • 相対位相について教えて下さい!!!!!!!!!

    (X,O)を位相空間、A⊂X、O|AをAの相対位相、X=R,Oを1次元ユークリッド位相、A=[0,1]とする。 部分位相空間(A,O|A)で、Aの部分集合B=(1/2,1]の内部と閉包を求めよ。 という問題なのですが・・・。相対位相がイマイチ分かりません(。。;) BもAの相対位相になるんじゃないんですか・・・? 分かる方お願いしますm(__)m

  • 数3 媒介変数

    x^2/a^2 + y^2/b^2 =1(a>b>0)上にOP⊥OQを満たしながら動く2点P,Qがある。ただしoは原点である。 (1)1/OP^2 + 1/OQ^2は一定であることを示せ。 (2)OP×OQの最小値を求めよ。 (2)がわかりません。 教えてください。

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 部分位相空間で"継承する"の意味は? 何を証明すればいい?

    こんにちは。 Show that if Y is a subspace of X, and A is a subset of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X. 「もし,YがXの部分空間でAはYの部分集合なら位相Aは部分空間Yがそれが継承する位相と同じように継承する」 という問題なのですか 位相(X,T)において位相空間(Y,{Y∩U∈2^X;U∈T})があってA⊂Y、、、、それから、、、 "継承する"っていういう意味でしょうか。何を示せばいいのでしょうか?

  • 位相の問題です。

    位相の問題です。 集合Xの部分集合族Qが次の3条件(1)(2)(3)をみたすとき、QをXの位相と呼び、XとQの対(X,Q)を位相空間という (1) X∈Q かつφ∈Q (2) U1,U2,U3,・・・・Uk∈Q ならばU1∩U2∩・・・Uk∈Q (3)任意の集合族{Uλ}(λ∈Λ)について、 U∈Q(任意のλ∈Λ) ならば ∪Uλ(λ∈Λ) ∈Q ここで X=R^m,r>0 とすると Q^(m)={y∈R^m|d(x,y)<r}∪{φ} は上の(1)(2)(3)を満たす事を確かめよという問題です。 Q^(m)の元が無数にあるので普通のシラミ潰し確認するような方法は取れないようなのです。 わかるかたいましたらよろしくお願いいたします。<(_ _)>

  • 直積位相

    X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか?

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε-δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?