• 締切済み

Z=f(x,y) x=rcosθ y=rsinθで

∂^2 Z/∂x^2+∂^2 Z/∂y^2を求めよという問題で ∂/∂x = cosθ ∂/∂r ‐ sinθ/r ∂/∂θ ∂/∂y = sinθ ∂/∂r + cosθ/r ∂/∂θ と計算していき ∂^2 Z/∂x^2 = (∂/∂x)(∂/∂x)Z = cos^2 θ ∂^2 Z/∂r^2 - cosθ ∂/∂r[sinθ/r Z/∂θ] - sinθ/r ∂/∂θ[cosθ ∂Z/∂r] + sinθ/r ∂/∂θ[sinθ/r ∂Z/∂θ] まできて、同様に∂^2 Z/∂y^2も計算して足したのですが答えが ∂^2 Z/∂x^2+∂^2 Z/∂y^2=∂^2 Z/∂r^2-2/r ∂Z/∂r+1/r^2 ∂^2Z/∂θ^2となり解答とあいません わかる方解説お願いします。

みんなの回答

回答No.3

2次元極座標のラプラシアンの計算ですよね! 昔各種座標系のラプラシアンの導出をやらされました。 式の変形ですけど、おかしいですね。 形式的に式変形したら第2項の係数は 1 になりました。 /∂x^2側からは cos^2θが /∂y^2側からは sin^2θが 係数で出てくるので足して1になります。 -2なんてどこから出てきたのでしょうか? なんとなく2重に書いてしまった項とかが有りそうです。

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.2

>∂^2 Z/∂x^2 >= (∂/∂x)(∂/∂x)Z >= cos^2 θ ∂^2 Z/∂r^2 - cosθ ∂/∂r[sinθ/r Z/∂θ] - sinθ/r ∂/∂θ[cosθ ∂Z/∂r] + sinθ/r ∂/∂θ[sinθ/r ∂Z/∂θ] ここまではよさそう。 ここからの展開で間違っている可能性大。 質問者のだした最後の式で間違っているのは∂Z/∂rの項だけである。この部分だけについて見てみる。 ∂Z/∂rの項がでてくるのは上式の第3項からになるが、 -(sinθ/r)∂/∂θ[cosθ∂Z/∂r]=(sinθ)^2/r*∂Z/∂r-sinθcosθ/r*∂^2Z/∂r∂θ となり、ここから出てくる∂Z/∂rの係数は(sinθ)^2/rとなります。 同様に∂^2Z/∂y^2から出てくる∂Z/∂rの係数は(cosθ)^2/rとなりこれを足すと1/rとなります。

  • IveQA
  • ベストアンサー率43% (16/37)
回答No.1

2次元のラプラシアンを極座標にするんだね。 >= cos^2 θ ∂^2 Z/∂r^2 - cosθ ∂/∂r[sinθ/r Z/∂θ] - sinθ/r ∂/∂θ[cosθ ∂Z/∂r] + sinθ/r ∂/∂θ[sinθ/r ∂Z/∂θ] ここまではOK 最後で∂Z/∂rの係数だけ違うから 途中計算の∂Z/∂rの部分を見る。 ∂^2 Z/∂x^2の∂Z/∂rの係数は(sinθ)^2/r ∂^2 Z/∂y^2の∂Z/∂rの係数は(cosθ)^2/r となるはず。 計算ミスを見つけて欲しいなら途中計算も書かないと!

関連するQ&A

  • 三重積分 (x^2+y^2+z^2)dxdydz

    範囲はこれで与えられています。x^2/a^2+y^2/b^2+z^2/c^2<=1 x=a*r*sinθcosλ y=b*r*sinθsinλ z=c*r*cosθ とおきました。rは0から1まで、θは0からpiまで、λは0から2piまでだと思います。ヤコビアンはabcr^2sinθになります。それを普通に積分していたのですが、答えが合わなかったのです。私のやり方が正しいかどうかだけを教えてほしいです。 よろしくおねがいします

  • 重積分で体積を求める問題です。{(x,y,z)|√x/a+√y/b+√

    重積分で体積を求める問題です。{(x,y,z)|√x/a+√y/b+√z/c<=1}(a,b,c>0)の体積を求めよ。 自分は積分領域D:√x/a+√y/b<=1、x,y>=0としてx=ar^2cos^4θ、y=br^2sin^2θと置いてJ=8abcr3sin^3θcos^3θ,DをM:0<=r<=1,0<=θ<=π/2に写して計算したのですが答えが合いません。 どなたか教えていただけないでしょうか。正解はabc/90になります。

  • (x+y-1)/(x-y)=(y+z-1)/(y-z)=(z+x-1)

    (x+y-1)/(x-y)=(y+z-1)/(y-z)=(z+x-1)/(z-x)のとき (1)x+y+z=3/2 (2)x^2+y^2+z^2=xy+yz+zx=3/4 (3){1/(x-1/2)^2}+{1/(y-1/2)^2}+{1/(z-1/2)^2}の値を求めよ。 (1)と(2)の値も問題で、上のような値になりました。 (3)は通分して、(1)と(2)をつかうと、分子が0になってしまい、明らかに答えとしては おかしい。(3)はどうすればよいのでしょうか。よろしくおねがいします。

  • 媒介変数θを用いたx,yの表示、 x=r(1+cosθ)cosθ ,

    媒介変数θを用いたx,yの表示、 x=r(1+cosθ)cosθ ,y=r(1+cosθ)sinθ  で定まる曲線をカージオイド(添付図)という。r=1のとき、この曲線の概形が添付図(心臓形)のようになることを確かめよ。 解答が無いので解説よろしくお願いします。

  • 立体V = {(x,y,z)|x^2 + y^2 <= z <= 1}

    立体V = {(x,y,z)|x^2 + y^2 <= z <= 1}の体積|V|を求めよ。 という問題で、まず、答えを見ずに自分で x^2 + y^2 <= 1 x^2 <= 1 - y^2 x <= ±√(1 - y^2) ∫∫∫_V dxdydz =∫[0,1]dz 2*∫[0,1]dy 2*∫[0,√(1-y^2)] (x^2 + y^2) dx =π/2. …と計算しました。本の答えは |V| = ∫[0,1] (∫∫_(x^2 + y^2 <= z) 1 dx dy) dz = ∫[0,1]πz dz =π/2. …となっています。これでは肝心の ∫∫_(x^2 + y^2 <= z) 1 dx dy の部分が分かりません。 その結果が πZ になっているので どこかに Z が紛れ込んでるはずですがどこか分かりません。 この式を ∫[a,b] dx ∫[c,d] 1 dy の形で教えて下さい。 お願いします。

  • 極座標表示

    模範解答と計算が合わないのです・・・。 比較してみて下さい。 3次元ポテンシャルと極座標表示の分野で、 シュレーディンガー方程式に使う為の変換です。 △(x、y、z)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2) という式を x=rsinθcosψ、y=rsinθsinψ、z=rcosθ の変数変換をする。 ∂/∂x=(∂r/∂x)(∂/∂r)+(∂θ/∂x)(∂/∂θ)+(∂ψ/∂x)(∂/∂ψ) ∂/∂y=(∂r/∂y)(∂/∂r)+(∂θ/∂y)(∂/∂θ)+(∂ψ/∂y)(∂/∂ψ) ∂/∂z=(∂r/∂z)(∂/∂r)+(∂θ/∂z)(∂/∂θ)+(∂ψ/∂z)(∂/∂ψ) と表され、 r=√(x^2+y^2+z^2)、tanθ={√(x^2+y^2)}/z、tanψ=y/x の関係から各係数を計算して (∂r/∂x)=x/r=sinθcosψ、(∂r/∂y)=y/r=sinθsinψ、(∂r/∂z)=z/r=cosθ (∂θ/∂x)=cosθcosψ/r、(∂θ/∂y)=cosθsinψ/r、(∂θ/∂z)=-sinθ/r (∂ψ/∂x)=-sinψ/rsinθ、(∂ψ/∂y)=cosψ/rsinθ、(∂ψ/∂z)=0 となるので、これをずーっと計算すると △(r、θ、ψ)=(∂^2/∂x^2)+(∂^2/∂y^2)+(∂^2/∂z^2)       =(1/r^2)(∂/∂r)(r^2・∂/∂r)       +(1/r^2sinθ)(∂/∂θ)(sinθ∂/∂θ)       +(1/r^2sin^2θ)(∂^2/∂ψ^2)       ―――(1) となるそうなのですが、 私がちまちま計算しましたところ、 △(r、θ、ψ)=(∂^2/∂r^2)+(1/r^2)(∂^2/∂θ^2)+(1/r^2sin^2θ)(∂^2/∂ψ^2) という形になりました。 同じようで、微妙に違うのですが これはどういうことなのでしょうか? そのまま(1)式に拡張して良いのか、 計算が途中で間違えたのか、如何でしょう。

  • 1/x+1/y+1/z=1/2

    を満たすx、y、zの組(x、y、z)の中でxが最大となる組を求めよ ちなみにx、y、zはx<y<zになる自然数とする という問題で、1/2=1/x+1/y+1/z<1/x+1/x+1/x=3/xからx<6まで分かったんですがここからが分かりません! xが5のとき1/5+1/y+1/z=1/2⇔1/y+1/z=3/10と代入してみてもだからなんなのかが分からずこれ以上進めません 解説お願いします!

  • 計算式x,y,zを教えてください。

    計算式x,y,zを教えてください。 (1)2x+3y-4z=-20 (2)-3x-y+5z=19 (3)4x+y+2z=10 x,y,zを求めよ。のやり方と答えを教えてください。 最初に(1)と(2)をみて、yの部分で(2)に3をかけて3yを消すのでしょうか? さっぱりわかりません。 また、これはなんていう方程式ですか? 三次?バカな質問ですみませんが、よろしくおねがいします

  • 球面座標表示での計算

    x=rsinθcosφ y=rsinθsinφ z=rcosθ と置いたとき以下のように計算するのですが θの部分微分のところで なぜrが分母にくるのかわかりません。 初歩的な計算だと思います。 どなたか、ご指摘くださる方よろしくお願いします。 ∂/∂x=∂/∂r・∂r/∂x+∂/∂θ・∂θ/∂x+∂/∂φ・∂φ/∂x ∂/∂y=∂/∂r・∂r/∂y+∂/∂θ・∂θ/∂y+∂/∂φ・∂φ/∂y ∂/∂z=∂/∂r・∂r/∂z+∂/∂θ・∂θ/∂z+∂/∂φ・∂φ/∂z r^2=x^2+y^2+z^2 tanφ=y/x tan^2θ=(x^2+y^2)/z^2 から ∂r/∂x=sinθcosφ ∂r/∂y=sinθsinφ ∂r/∂z=cosθ ∂θ/∂x=cosθcosφ/r    ←ここ  ∂θ/∂y=cosθsinφ/r    ←ここ ∂θ/∂z=-sinθ/r       ←ここ ∂φ/∂x=-sinφ/rsinθ ∂φ/∂y=cosφ/rsinθ ∂φ/∂z=0 等が求まる。 ∂/∂x=sinθcosφ∂/∂r+(cosθcosφ/r)∂/∂θー(sinφ/rsinθ)∂/∂φ ∂/∂y=sinθcosφ∂/∂r+(cosθsinφ/r)∂/∂θ+(cosφ/rsinθ)∂/∂φ ∂/∂z=cosθ∂/∂rー(sinθ/r)∂/∂θ これを ∇=i∂/∂x+j∂/∂y+k∂/∂z に代入して求めます。 つぎの式も丹念に計算していくと ∇^2=∂^2/∂r^2+(2/r)∂/∂r      +(1/r^2sinθ)∂(sinθ∂/∂θ)/∂θ      +(1/rsinθ)^2・∂^2/∂φ^2 注意深く計算して行って下さい。途中間違えたら台無しです。

  • f(x,y,z)=sin(x)+sin(y)+sin(z)

    f(x,y,z)=sin(x)+sin(y)+sin(z)このような 関数をプロットするソフトウェアを探しています。