• ベストアンサー

(a+b+c)^2 について

数学の課題となっている冊子で (a+b+c)^2 という問題が出ました。 自分は a^2+b^2+c^2+2ab+2bc+2ac と、したのですが、模範解答では a^2+b^2+c^2+2ab+2bc+2ca と、なっていました。 並び方は、下の方が美しいとは思うのですが、 「文字はアルファベット順に並べる」に合って無いんで、模範解答が間違ってる気がするのですが、どうなんでしょうか? よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • BookerL
  • ベストアンサー率52% (599/1132)
回答No.1

 文字式は通常アルファベット順に書きますが、この問題のように、a・b・c について対称な式では、a→b→c→a のように循環する形に書くのが普通です。 三角形の余弦定理なども、普通この順番で書きます。 http://www004.upp.so-net.ne.jp/s_honma/trigonometry/sinecosine.htm  ただ、どちらかが間違っていると言うことはなく、2ac が間違いだ、ということではありません。

その他の回答 (1)

回答No.2

アルファベット順に並べることもあるのですが、こういう場合は、「サイクリックの順」にしたほうが美しいとされています。 a→b→c→aの順 なので、模範解答が、模範です。 例 (a-b)(b-c)(c-a) 最後は、(-a+c)ではない。

関連するQ&A

  • (a-b)^2+(b-c)^2+(c-a)^2を簡単にせよ、という問題です。

    いつもありがとうございます。 高1の数学の問題で、 次の式を簡単にせよ。 (a-b)^2+(b-c)^2+(c-a)^2 という問題です。 =a^2-2ab+b^2 +b^2-2bc+c^2 +c^2-2ca+a^2 =2a^2-2ab-2ac+2b^2-2bc+2c^2 にしてみました。なんかこういう書き方があったような気がしたからです。 それで、答えに書いてあったのは、 =2a^2+2b^2+2c^2-2ab-2bc-2ca でした。 全部文字が二つずつなのですが、aが入ってる順じゃない?んでしょうか。 順番をどうやって考えればいいでしょうか。 もしよかったら教えてください。 よろしくおねがいします。

  • 数学・式の計算 教えてください。

      (a-3b+c)^2 の計算の 模範解答が以下の通りありました。 =(a-3b)^2+2c(a-3b)+c^2 =a^2 -6ab +9b^2 + 2ac -6bc +c^2 →(1) =a^2 +9b^2 +c^2 -6ab -6bc +2ca →(2)  (1)では 2ac とありますが、 (2)の最終的な答えでは 2ca となっています。  どうしてこうなるのでしょうか? 宜しくお願いします。

  • bc(b+c)+ca(c+a)+ab(a+b)≧…

    文字は正とする。   bc(b+c)+ca(c+a)+ab(a+b)≧6abc の証明をどうか教えていただけますようお願いいたします。

  • bc(b+c)+ca(c+a)+ab(a+b)≧…

    文字は正とする。 bc(b+c)+ca(c+a)+ab(a+b)≧6abc の証明をどうか教えていただけますようお願いいたします。

  • 因数分解せよ。 (a+b)(b+c)(c+a)+abc

    因数分解せよ。 (a+b)(b+c)(c+a)+abc 解答は (a+b+c)(ab+bc+ca) とありますが、 何度やってみても私はこの解答を出せませんでした。 =(b+c)a^2 + (b^2+3bc+c^2)a + bc(b+c) ・・・ここまでは解るのですが、この先から解りません。 解説には、たすきがけで解答を導く方法がのっていましたが、この方法を用いず、計算する方法はありますでしょうか。(2乗の書き方がわかり辛くてすみません)  たすきがけにとても時間をかけてしまい、地道に計算していく方法を知りたいのですが、教えていただければとても嬉しいです。よろしくお願い致します。

  • a≧1、b≧1、c≧1のとき次の不等式が成り立つことを示せ。

    (a^3-1/a^3)+(b^3-1/b^3)+(c^3-1/c^3)≧3(abc-1/abc) (左辺)-(右辺)=Pとおく。 P=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) -(1/a+1/b+1/c)(1/a^2+1/b^2+1/c^2-1/ab-1/bc-1/ca) a≧1、b≧1、c≧1であるから、 a+b+c≧3≧1/a+1/b+1/c>0・・・(1) (1)により(a^2-1/a^2)+(b^2-1/b^2)≧2(ab-1/ab) (b^2-1/b^2)+(c^2-1/c^2)≧2(bc-1/bc) (c^2-1/c^2)+(a^2-1/a^2)≧2(ca-1/ca) 辺々を加えて、両辺を2で割ると a^2+b^2+c^2-ab-bc-ca≧1/a^2+1/b^2+1/c^2-1/ab-1/bc-1/ca =1/2{(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2}            ≧0・・・(2) (1)、(2)によりP≧0 したがって、与えられた不等式は成り立つ。 等号はa=b=cのとき成り立つ。 >(1)、(2)によりP≧0 自分にはこれでは分かりづらいです。 具体的に数字決めて確かめては見たのですが、何かスッキリしません。 もう少し分かりやすく説明して頂けると幸いです。 >等号はa=b=cのとき成り立つ。 これはどこから導けばいいのでしょうか?

  • ab(b+c)+bc(b+c)+ca...3abc

    高校一年の数学の因数分解について質問させていただきます。 ab(a+b)+bc(b+c)+ca(c+a)+3abc という式についてなのですが、 ab(a+b)+bc(b+c)+ca(c+a)+2abcならば普通に解くことができます。 しかし2abcが3abcになってしまうと 計算が途中で行き詰ってしまいます。 自力で解いてみますと↓ ab(a+b)+bc(b+c)+ca(c+a)+3abc =(b+c)a^2+(b^2+c^2)a+bc(b+c)+3abc =(b+c)a^2+(b^2+2bc+c^2)a+bc(b+c)+abc =(b+c){a^2+(b+bc+c)a+bc} =...... =(a+b+c)(b+c)(a+bc) となってしまい気持ち悪い感じに終わってしまいます。 答えでは(a+b+c)(ab+bc+ca)となるはずなんです。 よければ、どこで間違ったのか(本当はこうするべきところ)と 答えまでの途中計算を残していただけると嬉しいです。 よろしくお願いします。

  • a+b+c=(1/a)+(1/b)+(1/c)=(1/ab)+(1/bc)+(1/ca)

    a+b+c=(1/a)+(1/b)+(1/c)=(1/ab)+(1/bc)+(1/ca) が成立するとき、a,b,cのいずれかは1に等しいことを証明する問題です。 上記の式から、abc=1, a+b+c=ab+bc+caがいえると思うので (x-a)(x-b)(x-c)=0を考えて、 x^3-(a+b+c)x^2+(ab+bc+ca)x-abc=0 すなわち x^3-(a+b+c)x^2+( a+b+c)x-1=0 この式はx=1で成立するので、(x-a)(x-b)(x-c)=0に x=1を代入して (1-a)(1-b)(1-c)=0 この式が成立するためには、a,b,cのいずれかが1に等しくなければならない、と解きました。この解きかたでよろしいでしょうか。

  • にゃんこ先生の自作問題、4実数a,b,c,dとその基本対称式の符号の可能性

    にゃんこ先生といいます。 3実数a,b,cと、基本対称式a+b+c,ab+bc+ca,abcにおいて、その符号の可能性を下のように調べました。 a,b,cの符号が分かると、abcの符号は一通りに決まるので、それは省略します。 a>0,b>0,c>0ならばa+b+c>0,ab+bc+ca>0 a>0,b>0,c<0でa+b+c>0,ab+bc+ca>0の例:a=3,b=3,c=-1 a>0,b>0,c<0でa+b+c>0,ab+bc+ca<0の例:a=1,b=1,c=-1 a>0,b>0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=1,c=-3 a>0,b>0,c<0でa+b+c<0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca>0はありえない。 a>0,b<0,c<0でa+b+c>0,ab+bc+ca<0の例:a=3,b=-1,c=-1 a>0,b<0,c<0でa+b+c<0,ab+bc+ca>0の例:a=1,b=-3,c=-3 a>0,b<0,c<0でa+b+c<0,ab+bc+ca<0の例:a=1,b=-1,c=-1 a<0,b<0,c<0ならばa+b+c<0,ab+bc+ca>0 では、4実数a,b,c,dと、基本対称式a+b+c+d,abc+abd+acd+bcd,ab+ac+ad+bc+bd+cd,abcd(これは省略する)において、その符号の可能性はどうなるのでしょうか?

  • a(b2-c2)+b(c2-a2)+c(a2-b2

    a(b2-c2)+b(c2-a2)+c(a2-b2)の答えについて、教えてください。 式は a(b2-c2)+b(c2-a2)+c(a2-b2) = ab2-ac2+bc2-ba2+ca2-cb2 = (-b+c)a2+(b2-c2)a+(bc2-cb2) = (-b+c)a2+(b+c)(b-c)a+bc(-b+c) = -{(b-c)a2-(b+c)(b-c)a-bc(b-c)} = -(b-c){a2-(b+c)a-bc} = -(b-c)(a-b)(a-c) = (a-b)(b-c)(c-a) 質問1 式は合ってますか? 質問2 答えは(a-b)(b-c)(c-a)で合ってますか? 質問3 -(b-c)(a-b)(a-c)で      マイナスは (a-c) にかけて、 (c-a) にし      (a-b)(b-c)(c-a) にするとみたのですが、      どうして、マイナスを (a-c) にかけるにかが、解りません。      計算をすべて解いて、それにマイナスをかけなくてもいいんですか?