• ベストアンサー

数学でわかりません。集合についての事です。

数学でわかりません。集合についての事です。 どなたか教えていただけませんでしょうか? 集合の式で「集合の要素の個数」の式で n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) -n(A∩C)- n(B∩C) + n(A∩B∩C) とありますが、式中にあります、・・・n(A)・・・ の「n」、 ・・・n(A∩B)・・・ の「n」、・・・n(A∩B∩C) の「n」、n(A∪B∪C)・・・ の「n」、のようにそれぞれの n はそれぞれどんな意味をあらわしているのでしょうか? お詳しい方、ご教授お願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.2

こんにちわ。 数式でずらっと書かれていると、何の事だかわからなくなるときってありますよね。^^ n(なんとか)というのは、「なんとかという集合に含まれている要素の数」という意味になります。 関数みたいなもの(関数みたいな表し方をしたもの)です。 n(A∪B∪C)であれば、「AとBとCの和集合に含まれている要素の数」となります。 先に質問されていた内容でいえば、 「野球とテニスとゴルフの和集合に含まれている要素の数(人数)」ということであり、 「野球かテニスかゴルフのいずれかをしている人数」を表すことになります。 >n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) -n(A∩C)- n(B∩C) + n(A∩B∩C) で書かれているのは、 単純に n(A)+ n(B)+ n(C)とすると「重複」する部分があるので、引いておかないとだめですよ。 ということを表しています。 ただし、2つの集合が重なっている部分をまた単純に引いてしまうと、今度は「引きすぎ」になるので最後に真ん中の部分を足しています。 このあたりは、図を見ながら塗り絵するような感覚で追った方がいいですね。^^

I-got-it
質問者

お礼

要素の数ですね。わかりました。もう一度これを踏まえて考えてみたいと思います。 また前回の質問をご覧になって頂きありがとうございました。

その他の回答 (1)

noname#118086
noname#118086
回答No.1
I-got-it
質問者

お礼

ありがとうございました。とても参考になりました。 紹介いただいた、このHPを基に検討したいと思います。

関連するQ&A

  • 集合の考え方についての疑問点

    こんにちは。数学の問題を解いていて解けたのですが解説を何回読んでも納得できないのでこの場をお借りして質問させてもらいます。 (問題)二桁の自然数の集合を全体集合とし、4の倍数をA、6の倍数の集合をBと表す。このとき、A∨Bの要素の個数を求めよ。また A△B=(A∧Bの補集合)∨(Aの補集合∧B)とおくとき、 A△(Bの補集合)の要素の個数を求めよ。 とあります。でちょっと解説で「A△B=(A∧Bの補集合)∨(Aの補集合∧B)においてBをBの補集合に置き換えると・・・」 と続き本当にそのまんますべてのBをBの補集合に置き換えているのですがなぜそんな事ができるのでしょうか。 式の関係とかBをBの補集合に置き換えたら普通に崩れてしまいそうなのに・・・ ちょっと疑問に思ったので質問させていただきます

  • 集合の問題です

    mを自然数の定数とする。1から100までのすべての自然数の集合を全体集合Uとし、その部分集合をA、B、Cを次のように定義する。 A={x|xは偶数} B={x|xは3の倍数} C={m、m+2、m+4} (1)m=2とする。自然数nがCに属することは、nがAに属するための□条件 (2)mが奇数であることは、―(A∪B)∩Cの要素の個数が2であるための□条件 どなたかわかる方教えてください。宜しくお願いいたします。 ちなみに―(A∪B)はAまたはBでないと言う意味で表しました。

  • 補集合の性質について

    数学Aからです。恐らく間違ってないと思うのですが… 図より、n(U)={40}、n(A)={18}、n(B)={25}、n(A∩B)={6}にて、 ____ n(A∪B)を求めろ。という問題ですが、_ _ これは、n(A∩B)と同じですね。補集合Aと補集合Bの共通部分の個数は、AまたはBの共通部分が重複しないように計算すれば、40-{18+(25-6)}=3だと思うのですが…また、図を補集合Aと補集合Bについて斜線を引けば、二つが重なる部分(共通部分)の個数は、やはり3だと思うのですが、これは誤りでしょうか?

  • 集合の基数について

    集合について勉強しています。以下質問です。 1. 「集合の基数」というのは「集合の要素の個数」という意味でよろしいのでしょうか? 2. 問題を解いていてわからなかったことです。問題の解答によると (a){φ}の基数は1であり、 (b)べき集合P({{φ,{φ}},φ})の基数は4であり、 (c){{2},4,6,{6,8},9,12}∩{1,3,{6,8},{9},12}の基数は2である ということです。 (a)について、空集合が要素であるから1なのだろうなと思うのですが、 (b)について、どうして4になるかわかりません。空集合はすでに要素として書いてあるから(b)のべき集合は {{φ,{φ}},φ,{{φ,{φ}},φ}}となって答えは3になるのではないのでしょうか? (c)について、{{6,8},12}の2つが要素となるので2という答えなのでしょうが、 どうしてこのときは空集合を要素としてカウントして答えが3にならないのでしょうか? 集合、要素、空集合についての理解が頭の中で整理できません。 どなたかわかりやすく説明してください。よろしくお願いします。

  • 数学A 集合

    今高1ですが、大学進学を考えているので 大学の入試問題を解いています。 解答を見てもわからない問題があるので、教えて下さい! 分からないところは f(g(x))とg(f(x)) がどういう意味なのかです。 問題は、 2つの関数f(x)=-x+3,g(x)=x^2+5 を考える。 -50以上50以下の整数の集合 A={-50,-49,・・・,-1,0,1,・・・,50} に対し、2つの集合BとCを B={f(x)|x∈A}, C={g(x)|x∈A} により定める。集合Mの要素の個数をn(M)で表す。 D{f(g(x))|x∈A}, E={g(f(x))|x∈A} によって集合D,Eを定めるとき、n(D), n(E)を求めよ。 という問題です。 解答は 集合Dは、 D={f(g(x))|x∈A}={f(x)|x∈C} と考えられるが、xが異なればf(x)の値は異なるから、 n(D)=n(C)=51 集合Eは、 E={g(f(x))|x∈A}={g(x)|x∈B} 集合Bは-47以上53以下の整数の集合で、絶対値の異なる整数は54個ある。よって、 n(E)=54 です。 2003年の近畿大学・理工学部の改題らしいです。 長くなってすみません<(_ _)> おねがいします。

  • 数学 集合と直積の問題について

    数学にて集合についての問題です。 次が成り立つことを示せ。 (1) A×(B U C) = (A × B)U(A × C) (2) (A n C) × C = (A × C) n (B × C) A,B,Cは任意の集合 証明をすれと言われても何をどうすればいいのかさっぱりです。 できれば説明をつけてお願いします。

  • 集合の要素

    数学を学んでいる学生です。集合の基本的な部分で悩んでいます。 集合A={a, b, c}と定義されたとき、 集合B={{x}|x∈A}とされていた場合には、a一文字なので Bの要素はB={{a},{b},{c}}のみですか? それともBはAの部分集合の集合、という意味なのでしょうか? 回答よろしくお願いいたします。

  • 集合(画像)の平均化に関する数学的方法

    素人的な質問かもしれませんがよろしくお願いします ある集合Aの平均値A’(私が検討しているのは平均画像)に別の集合Bの平均値B’があるとき A’の要素とB’の要素をお互い持てるような平均値C’を求める場合 A’にB’をいくつ加えて平均(平滑化)を求めればればよいか 数学的根拠となる数式などないでしょうか 私が今考えているのは 2つの画像のお互いの特徴をもった画像を作る場合 ひとつずつ足して平均化し、視覚的に確認すればよいのですが 客観的評価に乏しいため 数学的な根拠を探しています どなたかよい方法があればご教授ください よろしくお願いします

  • 集合の問題で

    集合A,B,Cはそれぞれ、A={x|xは1以上60以下の整数}、B={x|xは6の倍数}、C={x|xは4の倍数}を 表すとき、集合A∩(B∪C)の要素の個数はいくつか。 という問題の答えが20個というのはわかったんですが、なぜ20個になるかわからないです。 わかる方がいらっしゃいましたら、お願いします。

  • 数学I・Aについて

    高校数学I・A(新課程)についてお尋ねします。 数学の独学をしている社会人です。(訳あって高校を中退しました。) 単純に数学を楽しみたくて、最近新課程の数I・Aの参考書を入手し、 取り組み始めました。 そこで質問ですが、学校ではIとAは同時に授業をすすめるんですよね? Iは【式の計算】 → 【一次不等式】 → 【集合】・・・とあり、 Aは 【集合の要素の個数】 → 【場合の数】・・・ とあります。 参考書では数Iの【集合】の部分で詳しい説明がありますが、 数Aの【集合の要素の個数】はさらりとしか書いてありません。 まだ詳しく勉強していませんが、参考書を見る限り、数Iの【集合】には 部分集合や補集合など詳しい図解があります。 しかし、数I・Aを同時に授業が進んだ場合、数Aの【集合の要素の個数】を 先に勉強することになります。 なぜ、同じような勉強で数IとAに分かれているのでしょうか? 【集合の要素の個数】の次の【場合の数】に何か関連性があるのでしょうか?